jiff/tz/timezone.rs
1use crate::{
2 civil::DateTime,
3 error::{err, Error},
4 tz::{
5 ambiguous::{AmbiguousOffset, AmbiguousTimestamp, AmbiguousZoned},
6 offset::{Dst, Offset},
7 },
8 util::{array_str::ArrayStr, sync::Arc},
9 Timestamp, Zoned,
10};
11
12#[cfg(feature = "alloc")]
13use crate::tz::posix::PosixTimeZoneOwned;
14
15use self::repr::Repr;
16
17/// A representation of a [time zone].
18///
19/// A time zone is a set of rules for determining the civil time, via an offset
20/// from UTC, in a particular geographic region. In many cases, the offset
21/// in a particular time zone can vary over the course of a year through
22/// transitions into and out of [daylight saving time].
23///
24/// A `TimeZone` can be one of three possible representations:
25///
26/// * An identifier from the [IANA Time Zone Database] and the rules associated
27/// with that identifier.
28/// * A fixed offset where there are never any time zone transitions.
29/// * A [POSIX TZ] string that specifies a standard offset and an optional
30/// daylight saving time offset along with a rule for when DST is in effect.
31/// The rule applies for every year. Since POSIX TZ strings cannot capture the
32/// full complexity of time zone rules, they generally should not be used.
33///
34/// The most practical and useful representation is an IANA time zone. Namely,
35/// it enjoys broad support and its database is regularly updated to reflect
36/// real changes in time zone rules throughout the world. On Unix systems,
37/// the time zone database is typically found at `/usr/share/zoneinfo`. For
38/// more information on how Jiff interacts with The Time Zone Database, see
39/// [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase).
40///
41/// In typical usage, users of Jiff shouldn't need to reference a `TimeZone`
42/// directly. Instead, there are convenience APIs on datetime types that accept
43/// IANA time zone identifiers and do automatic database lookups for you. For
44/// example, to convert a timestamp to a zone aware datetime:
45///
46/// ```
47/// use jiff::Timestamp;
48///
49/// let ts = Timestamp::from_second(1_456_789_123)?;
50/// let zdt = ts.in_tz("America/New_York")?;
51/// assert_eq!(zdt.to_string(), "2016-02-29T18:38:43-05:00[America/New_York]");
52///
53/// # Ok::<(), Box<dyn std::error::Error>>(())
54/// ```
55///
56/// Or to convert a civil datetime to a zoned datetime corresponding to a
57/// precise instant in time:
58///
59/// ```
60/// use jiff::civil::date;
61///
62/// let dt = date(2024, 7, 15).at(21, 27, 0, 0);
63/// let zdt = dt.in_tz("America/New_York")?;
64/// assert_eq!(zdt.to_string(), "2024-07-15T21:27:00-04:00[America/New_York]");
65///
66/// # Ok::<(), Box<dyn std::error::Error>>(())
67/// ```
68///
69/// Or even converted a zoned datetime from one time zone to another:
70///
71/// ```
72/// use jiff::civil::date;
73///
74/// let dt = date(2024, 7, 15).at(21, 27, 0, 0);
75/// let zdt1 = dt.in_tz("America/New_York")?;
76/// let zdt2 = zdt1.in_tz("Israel")?;
77/// assert_eq!(zdt2.to_string(), "2024-07-16T04:27:00+03:00[Israel]");
78///
79/// # Ok::<(), Box<dyn std::error::Error>>(())
80/// ```
81///
82/// # The system time zone
83///
84/// The system time zone can be retrieved via [`TimeZone::system`]. If it
85/// couldn't be detected or if the `tz-system` crate feature is not enabled,
86/// then [`TimeZone::UTC`] is returned. `TimeZone::system` is what's used
87/// internally for retrieving the current zoned datetime via [`Zoned::now`].
88///
89/// While there is no platform independent way to detect your system's
90/// "default" time zone, Jiff employs best-effort heuristics to determine it.
91/// (For example, by examining `/etc/localtime` on Unix systems.) When the
92/// heuristics fail, Jiff will emit a `WARN` level log. It can be viewed by
93/// installing a `log` compatible logger, such as [`env_logger`].
94///
95/// # Custom time zones
96///
97/// At present, Jiff doesn't provide any APIs for manually constructing a
98/// custom time zone. However, [`TimeZone::tzif`] is provided for reading
99/// any valid TZif formatted data, as specified by [RFC 8536]. This provides
100/// an interoperable way of utilizing custom time zone rules.
101///
102/// # A `TimeZone` is immutable
103///
104/// Once a `TimeZone` is created, it is immutable. That is, its underlying
105/// time zone transition rules will never change. This is true for system time
106/// zones or even if the IANA Time Zone Database it was loaded from changes on
107/// disk. The only way such changes can be observed is by re-requesting the
108/// `TimeZone` from a `TimeZoneDatabase`. (Or, in the case of the system time
109/// zone, by calling `TimeZone::system`.)
110///
111/// # A `TimeZone` is cheap to clone
112///
113/// A `TimeZone` can be cheaply cloned. It uses automic reference counting
114/// internally. When `alloc` is disabled, cloning a `TimeZone` is still cheap
115/// because POSIX time zones and TZif time zones are unsupported. Therefore,
116/// cloning a time zone does a deep copy (since automic reference counting is
117/// not available), but the data being copied is small.
118///
119/// # Time zone equality
120///
121/// `TimeZone` provides an imperfect notion of equality. That is, when two time
122/// zones are equal, then it is guaranteed for them to have the same rules.
123/// However, two time zones may compare unequal and yet still have the same
124/// rules.
125///
126/// The equality semantics are as follows:
127///
128/// * Two fixed offset time zones are equal when their offsets are equal.
129/// * Two POSIX time zones are equal when their original rule strings are
130/// byte-for-byte identical.
131/// * Two IANA time zones are equal when their identifiers are equal _and_
132/// checksums of their rules are equal.
133/// * In all other cases, time zones are unequal.
134///
135/// Time zone equality is, for example, used in APIs like [`Zoned::since`]
136/// when asking for spans with calendar units. Namely, since days can be of
137/// different lengths in different time zones, `Zoned::since` will return an
138/// error when the two zoned datetimes are in different time zones and when
139/// the caller requests units greater than hours.
140///
141/// # Dealing with ambiguity
142///
143/// The principal job of a `TimeZone` is to provide two different
144/// transformations:
145///
146/// * A conversion from a [`Timestamp`] to a civil time (also known as local,
147/// naive or plain time). This conversion is always unambiguous. That is,
148/// there is always precisely one representation of civil time for any
149/// particular instant in time for a particular time zone.
150/// * A conversion from a [`civil::DateTime`](crate::civil::DateTime) to an
151/// instant in time. This conversion is sometimes ambiguous in that a civil
152/// time might have either never appear on the clocks in a particular
153/// time zone (a gap), or in that the civil time may have been repeated on the
154/// clocks in a particular time zone (a fold). Typically, a transition to
155/// daylight saving time is a gap, while a transition out of daylight saving
156/// time is a fold.
157///
158/// The timestamp-to-civil time conversion is done via
159/// [`TimeZone::to_datetime`], or its lower level counterpart,
160/// [`TimeZone::to_offset`]. The civil time-to-timestamp conversion is done
161/// via one of the following routines:
162///
163/// * [`TimeZone::to_zoned`] conveniently returns a [`Zoned`] and automatically
164/// uses the
165/// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible)
166/// strategy if the given civil datetime is ambiguous in the time zone.
167/// * [`TimeZone::to_ambiguous_zoned`] returns a potentially ambiguous
168/// zoned datetime, [`AmbiguousZoned`], and provides fine-grained control over
169/// how to resolve ambiguity, if it occurs.
170/// * [`TimeZone::to_timestamp`] is like `TimeZone::to_zoned`, but returns
171/// a [`Timestamp`] instead.
172/// * [`TimeZone::to_ambiguous_timestamp`] is like
173/// `TimeZone::to_ambiguous_zoned`, but returns an [`AmbiguousTimestamp`]
174/// instead.
175///
176/// Here is an example where we explore the different disambiguation strategies
177/// for a fold in time, where in this case, the 1 o'clock hour is repeated:
178///
179/// ```
180/// use jiff::{civil::date, tz::TimeZone};
181///
182/// let tz = TimeZone::get("America/New_York")?;
183/// let dt = date(2024, 11, 3).at(1, 30, 0, 0);
184/// // It's ambiguous, so asking for an unambiguous instant presents an error!
185/// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err());
186/// // Gives you the earlier time in a fold, i.e., before DST ends:
187/// assert_eq!(
188/// tz.to_ambiguous_zoned(dt).earlier()?.to_string(),
189/// "2024-11-03T01:30:00-04:00[America/New_York]",
190/// );
191/// // Gives you the later time in a fold, i.e., after DST ends.
192/// // Notice the offset change from the previous example!
193/// assert_eq!(
194/// tz.to_ambiguous_zoned(dt).later()?.to_string(),
195/// "2024-11-03T01:30:00-05:00[America/New_York]",
196/// );
197/// // "Just give me something reasonable"
198/// assert_eq!(
199/// tz.to_ambiguous_zoned(dt).compatible()?.to_string(),
200/// "2024-11-03T01:30:00-04:00[America/New_York]",
201/// );
202///
203/// # Ok::<(), Box<dyn std::error::Error>>(())
204/// ```
205///
206/// # Serde integration
207///
208/// At present, a `TimeZone` does not implement Serde's `Serialize` or
209/// `Deserialize` traits directly. Nor does it implement `std::fmt::Display`
210/// or `std::str::FromStr`. The reason for this is that it's not totally
211/// clear if there is one single obvious behavior. Moreover, some `TimeZone`
212/// values do not have an obvious succinct serialized representation. (For
213/// example, when `/etc/localtime` on a Unix system is your system's time zone,
214/// and it isn't a symlink to a TZif file in `/usr/share/zoneinfo`. In which
215/// case, an IANA time zone identifier cannot easily be deduced by Jiff.)
216///
217/// Instead, Jiff offers helpers for use with Serde's [`with` attribute] via
218/// the [`fmt::serde`](crate::fmt::serde) module:
219///
220/// ```
221/// use jiff::tz::TimeZone;
222///
223/// #[derive(Debug, serde::Deserialize, serde::Serialize)]
224/// struct Record {
225/// #[serde(with = "jiff::fmt::serde::tz::optional")]
226/// tz: Option<TimeZone>,
227/// }
228///
229/// let json = r#"{"tz":"America/Nuuk"}"#;
230/// let got: Record = serde_json::from_str(&json)?;
231/// assert_eq!(got.tz, Some(TimeZone::get("America/Nuuk")?));
232/// assert_eq!(serde_json::to_string(&got)?, json);
233///
234/// # Ok::<(), Box<dyn std::error::Error>>(())
235/// ```
236///
237/// Alternatively, you may use the
238/// [`fmt::temporal::DateTimeParser::parse_time_zone`](crate::fmt::temporal::DateTimeParser::parse_time_zone)
239/// or
240/// [`fmt::temporal::DateTimePrinter::print_time_zone`](crate::fmt::temporal::DateTimePrinter::print_time_zone)
241/// routines to parse or print `TimeZone` values without using Serde.
242///
243/// [time zone]: https://en.wikipedia.org/wiki/Time_zone
244/// [daylight saving time]: https://en.wikipedia.org/wiki/Daylight_saving_time
245/// [IANA Time Zone Database]: https://en.wikipedia.org/wiki/Tz_database
246/// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
247/// [`env_logger`]: https://docs.rs/env_logger
248/// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536
249/// [`with` attribute]: https://serde.rs/field-attrs.html#with
250#[derive(Clone, Eq, PartialEq)]
251pub struct TimeZone {
252 repr: Repr,
253}
254
255impl TimeZone {
256 /// The UTC time zone.
257 ///
258 /// The offset of this time is `0` and never has any transitions.
259 pub const UTC: TimeZone = TimeZone { repr: Repr::utc() };
260
261 /// Returns the system configured time zone, if available.
262 ///
263 /// Detection of a system's default time zone is generally heuristic
264 /// based and platform specific.
265 ///
266 /// If callers need to know whether discovery of the system time zone
267 /// failed, then use [`TimeZone::try_system`].
268 ///
269 /// # Fallback behavior
270 ///
271 /// If the system's default time zone could not be determined, or if
272 /// the `tz-system` crate feature is not enabled, then this returns
273 /// [`TimeZone::unknown`]. A `WARN` level log will also be emitted with
274 /// a message explaining why time zone detection failed. The fallback to
275 /// an unknown time zone is a practical trade-off, is what most other
276 /// systems tend to do and is also recommended by [relevant standards such
277 /// as freedesktop.org][freedesktop-org-localtime].
278 ///
279 /// An unknown time zone _behaves_ like [`TimeZone::UTC`], but will
280 /// print as `Etc/Unknown` when converting a `Zoned` to a string.
281 ///
282 /// If you would instead like to fall back to UTC instead
283 /// of the special "unknown" time zone, then you can do
284 /// `TimeZone::try_system().unwrap_or(TimeZone::UTC)`.
285 ///
286 /// # Platform behavior
287 ///
288 /// This section is a "best effort" explanation of how the time zone is
289 /// detected on supported platforms. The behavior is subject to change.
290 ///
291 /// On all platforms, the `TZ` environment variable overrides any other
292 /// heuristic, and provides a way for end users to set the time zone for
293 /// specific use cases. In general, Jiff respects the [POSIX TZ] rules.
294 /// Here are some examples:
295 ///
296 /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone
297 /// Database Identifier.
298 /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone
299 /// by providing a file path to a TZif file directly.
300 /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight
301 /// saving time transition rule.
302 ///
303 /// Otherwise, when `TZ` isn't set, then:
304 ///
305 /// On Unix non-Android systems, this inspects `/etc/localtime`. If it's
306 /// a symbolic link to an entry in `/usr/share/zoneinfo`, then the suffix
307 /// is considered an IANA Time Zone Database identifier. Otherwise,
308 /// `/etc/localtime` is read as a TZif file directly.
309 ///
310 /// On Android systems, this inspects the `persist.sys.timezone` property.
311 ///
312 /// On Windows, the system time zone is determined via
313 /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an
314 /// IANA Time Zone Database identifier via Unicode's
315 /// [CLDR XML data].
316 ///
317 /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html
318 /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
319 /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation
320 /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml
321 #[inline]
322 pub fn system() -> TimeZone {
323 match TimeZone::try_system() {
324 Ok(tz) => tz,
325 Err(_err) => {
326 warn!(
327 "failed to get system time zone, \
328 falling back to `Etc/Unknown` \
329 (which behaves like UTC): {_err}",
330 );
331 TimeZone::unknown()
332 }
333 }
334 }
335
336 /// Returns the system configured time zone, if available.
337 ///
338 /// If the system's default time zone could not be determined, or if the
339 /// `tz-system` crate feature is not enabled, then this returns an error.
340 ///
341 /// Detection of a system's default time zone is generally heuristic
342 /// based and platform specific.
343 ///
344 /// Note that callers should generally prefer using [`TimeZone::system`].
345 /// If a system time zone could not be found, then it falls
346 /// back to [`TimeZone::UTC`] automatically. This is often
347 /// what is recommended by [relevant standards such as
348 /// freedesktop.org][freedesktop-org-localtime]. Conversely, this routine
349 /// is useful if detection of a system's default time zone is critical.
350 ///
351 /// # Platform behavior
352 ///
353 /// This section is a "best effort" explanation of how the time zone is
354 /// detected on supported platforms. The behavior is subject to change.
355 ///
356 /// On all platforms, the `TZ` environment variable overrides any other
357 /// heuristic, and provides a way for end users to set the time zone for
358 /// specific use cases. In general, Jiff respects the [POSIX TZ] rules.
359 /// Here are some examples:
360 ///
361 /// * `TZ=America/New_York` for setting a time zone via an IANA Time Zone
362 /// Database Identifier.
363 /// * `TZ=/usr/share/zoneinfo/America/New_York` for setting a time zone
364 /// by providing a file path to a TZif file directly.
365 /// * `TZ=EST5EDT,M3.2.0,M11.1.0` for setting a time zone via a daylight
366 /// saving time transition rule.
367 ///
368 /// Otherwise, when `TZ` isn't set, then:
369 ///
370 /// On Unix systems, this inspects `/etc/localtime`. If it's a symbolic
371 /// link to an entry in `/usr/share/zoneinfo`, then the suffix is
372 /// considered an IANA Time Zone Database identifier. Otherwise,
373 /// `/etc/localtime` is read as a TZif file directly.
374 ///
375 /// On Windows, the system time zone is determined via
376 /// [`GetDynamicTimeZoneInformation`]. The result is then mapped to an
377 /// IANA Time Zone Database identifier via Unicode's
378 /// [CLDR XML data].
379 ///
380 /// [freedesktop-org-localtime]: https://www.freedesktop.org/software/systemd/man/latest/localtime.html
381 /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
382 /// [`GetDynamicTimeZoneInformation`]: https://learn.microsoft.com/en-us/windows/win32/api/timezoneapi/nf-timezoneapi-getdynamictimezoneinformation
383 /// [CLDR XML data]: https://github.com/unicode-org/cldr/raw/main/common/supplemental/windowsZones.xml
384 #[inline]
385 pub fn try_system() -> Result<TimeZone, Error> {
386 #[cfg(not(feature = "tz-system"))]
387 {
388 Err(err!(
389 "failed to get system time zone since 'tz-system' \
390 crate feature is not enabled",
391 ))
392 }
393 #[cfg(feature = "tz-system")]
394 {
395 crate::tz::system::get(crate::tz::db())
396 }
397 }
398
399 /// A convenience function for performing a time zone database lookup for
400 /// the given time zone identifier. It uses the default global time zone
401 /// database via [`tz::db()`](crate::tz::db()).
402 ///
403 /// It is guaranteed that if the given time zone name is case insensitively
404 /// equivalent to `UTC`, then the time zone returned will be equivalent to
405 /// `TimeZone::UTC`. Similarly for `Etc/Unknown` and `TimeZone::unknown()`.
406 ///
407 /// # Errors
408 ///
409 /// This returns an error if the given time zone identifier could not be
410 /// found in the default [`TimeZoneDatabase`](crate::tz::TimeZoneDatabase).
411 ///
412 /// # Example
413 ///
414 /// ```
415 /// use jiff::{tz::TimeZone, Timestamp};
416 ///
417 /// let tz = TimeZone::get("Japan")?;
418 /// assert_eq!(
419 /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(),
420 /// "1970-01-01T09:00:00",
421 /// );
422 ///
423 /// # Ok::<(), Box<dyn std::error::Error>>(())
424 /// ```
425 #[inline]
426 pub fn get(time_zone_name: &str) -> Result<TimeZone, Error> {
427 crate::tz::db().get(time_zone_name)
428 }
429
430 /// Returns a time zone with a fixed offset.
431 ///
432 /// A fixed offset will never have any transitions and won't follow any
433 /// particular time zone rules. In general, one should avoid using fixed
434 /// offset time zones unless you have a specific need for them. Otherwise,
435 /// IANA time zones via [`TimeZone::get`] should be preferred, as they
436 /// more accurately model the actual time zone transitions rules used in
437 /// practice.
438 ///
439 /// # Example
440 ///
441 /// ```
442 /// use jiff::{tz::{self, TimeZone}, Timestamp};
443 ///
444 /// let tz = TimeZone::fixed(tz::offset(10));
445 /// assert_eq!(
446 /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(),
447 /// "1970-01-01T10:00:00",
448 /// );
449 ///
450 /// # Ok::<(), Box<dyn std::error::Error>>(())
451 /// ```
452 #[inline]
453 pub const fn fixed(offset: Offset) -> TimeZone {
454 // Not doing `offset == Offset::UTC` because of `const`.
455 if offset.seconds_ranged().get_unchecked() == 0 {
456 return TimeZone::UTC;
457 }
458 let repr = Repr::fixed(offset);
459 TimeZone { repr }
460 }
461
462 /// Creates a time zone from a [POSIX TZ] rule string.
463 ///
464 /// A POSIX time zone provides a way to tersely define a single daylight
465 /// saving time transition rule (or none at all) that applies for all
466 /// years.
467 ///
468 /// Users should avoid using this kind of time zone unless there is a
469 /// specific need for it. Namely, POSIX time zones cannot capture the full
470 /// complexity of time zone transition rules in the real world. (See the
471 /// example below.)
472 ///
473 /// [POSIX TZ]: https://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap08.html
474 ///
475 /// # Errors
476 ///
477 /// This returns an error if the given POSIX time zone string is invalid.
478 ///
479 /// # Example
480 ///
481 /// This example demonstrates how a POSIX time zone may be historically
482 /// inaccurate:
483 ///
484 /// ```
485 /// use jiff::{civil::date, tz::TimeZone};
486 ///
487 /// // The tzdb entry for America/New_York.
488 /// let iana = TimeZone::get("America/New_York")?;
489 /// // The POSIX TZ string for New York DST that went into effect in 2007.
490 /// let posix = TimeZone::posix("EST5EDT,M3.2.0,M11.1.0")?;
491 ///
492 /// // New York entered DST on April 2, 2006 at 2am:
493 /// let dt = date(2006, 4, 2).at(2, 0, 0, 0);
494 /// // The IANA tzdb entry correctly reports it as ambiguous:
495 /// assert!(iana.to_ambiguous_timestamp(dt).is_ambiguous());
496 /// // But the POSIX time zone does not:
497 /// assert!(!posix.to_ambiguous_timestamp(dt).is_ambiguous());
498 ///
499 /// # Ok::<(), Box<dyn std::error::Error>>(())
500 /// ```
501 #[cfg(feature = "alloc")]
502 pub fn posix(posix_tz_string: &str) -> Result<TimeZone, Error> {
503 let posix_tz = PosixTimeZoneOwned::parse(posix_tz_string)?;
504 Ok(TimeZone::from_posix_tz(posix_tz))
505 }
506
507 /// Creates a time zone from a POSIX tz. Expose so that other parts of Jiff
508 /// can create a `TimeZone` from a POSIX tz. (Kinda sloppy to be honest.)
509 #[cfg(feature = "alloc")]
510 pub(crate) fn from_posix_tz(posix: PosixTimeZoneOwned) -> TimeZone {
511 let repr = Repr::arc_posix(Arc::new(posix));
512 TimeZone { repr }
513 }
514
515 /// Creates a time zone from TZif binary data, whose format is specified
516 /// in [RFC 8536]. All versions of TZif (up through version 4) are
517 /// supported.
518 ///
519 /// This constructor is typically not used, and instead, one should rely
520 /// on time zone lookups via time zone identifiers with routines like
521 /// [`TimeZone::get`]. However, this constructor does provide one way
522 /// of using custom time zones with Jiff.
523 ///
524 /// The name given should be a IANA time zone database identifier.
525 ///
526 /// [RFC 8536]: https://datatracker.ietf.org/doc/html/rfc8536
527 ///
528 /// # Errors
529 ///
530 /// This returns an error if the given data was not recognized as valid
531 /// TZif.
532 #[cfg(feature = "alloc")]
533 pub fn tzif(name: &str, data: &[u8]) -> Result<TimeZone, Error> {
534 use alloc::string::ToString;
535
536 let name = name.to_string();
537 let tzif = crate::tz::tzif::Tzif::parse(Some(name), data)?;
538 let repr = Repr::arc_tzif(Arc::new(tzif));
539 Ok(TimeZone { repr })
540 }
541
542 /// Returns a `TimeZone` that is specifially marked as "unknown."
543 ///
544 /// This corresponds to the Unicode CLDR identifier `Etc/Unknown`, which
545 /// is guaranteed to never be a valid IANA time zone identifier (as of
546 /// the `2025a` release of tzdb).
547 ///
548 /// This type of `TimeZone` is used in circumstances where one wants to
549 /// signal that discovering a time zone failed for some reason, but that
550 /// execution can reasonably continue. For example, [`TimeZone::system`]
551 /// returns this type of time zone when the system time zone could not be
552 /// discovered.
553 ///
554 /// # Example
555 ///
556 /// Jiff permits an "unknown" time zone to losslessly be transmitted
557 /// through serialization:
558 ///
559 /// ```
560 /// use jiff::{civil::date, tz::TimeZone, Zoned};
561 ///
562 /// let tz = TimeZone::unknown();
563 /// let zdt = date(2025, 2, 1).at(17, 0, 0, 0).to_zoned(tz)?;
564 /// assert_eq!(zdt.to_string(), "2025-02-01T17:00:00Z[Etc/Unknown]");
565 /// let got: Zoned = "2025-02-01T17:00:00Z[Etc/Unknown]".parse()?;
566 /// assert_eq!(got, zdt);
567 ///
568 /// # Ok::<(), Box<dyn std::error::Error>>(())
569 /// ```
570 ///
571 /// Note that not all systems support this. Some systems will reject
572 /// `Etc/Unknown` because it is not a valid IANA time zone identifier and
573 /// does not have an entry in the IANA time zone database. However, Jiff
574 /// takes this approach because it surfaces an error condition in detecting
575 /// the end user's time zone. Callers not wanting an "unknown" time zone
576 /// can use `TimeZone::try_system().unwrap_or(TimeZone::UTC)` instead of
577 /// `TimeZone::system`. (Where the latter falls back to the "unknown" time
578 /// zone when a system configured time zone could not be found.)
579 pub const fn unknown() -> TimeZone {
580 let repr = Repr::unknown();
581 TimeZone { repr }
582 }
583
584 /// This creates an unnamed TZif-backed `TimeZone`.
585 ///
586 /// At present, the only way for an unnamed TZif-backed `TimeZone` to be
587 /// created is when the system time zone has no identifiable name. For
588 /// example, when `/etc/localtime` is hard-linked to a TZif file instead
589 /// of being symlinked. In this case, there is no cheap and unambiguous
590 /// way to determine the time zone name. So we just let it be unnamed.
591 /// Since this is the only such case, and hopefully will only ever be the
592 /// only such case, we consider such unnamed TZif-back `TimeZone` values
593 /// as being the "system" time zone.
594 ///
595 /// When this is used to construct a `TimeZone`, the `TimeZone::name`
596 /// method will be "Local". This is... pretty unfortunate. I'm not sure
597 /// what else to do other than to make `TimeZone::name` return an
598 /// `Option<&str>`. But... we use it in a bunch of places and it just
599 /// seems bad for a time zone to not have a name.
600 ///
601 /// OK, because of the above, I renamed `TimeZone::name` to
602 /// `TimeZone::diagnostic_name`. This should make it clearer that you can't
603 /// really use the name to do anything interesting. This also makes more
604 /// sense for POSIX TZ strings too.
605 ///
606 /// In any case, this routine stays unexported because I don't want TZif
607 /// backed `TimeZone` values to proliferate. If you have a legitimate use
608 /// case otherwise, please file an issue. It will require API design.
609 ///
610 /// # Errors
611 ///
612 /// This returns an error if the given TZif data is invalid.
613 #[cfg(feature = "tz-system")]
614 pub(crate) fn tzif_system(data: &[u8]) -> Result<TimeZone, Error> {
615 let tzif = crate::tz::tzif::Tzif::parse(None, data)?;
616 let repr = Repr::arc_tzif(Arc::new(tzif));
617 Ok(TimeZone { repr })
618 }
619
620 #[inline]
621 pub(crate) fn diagnostic_name(&self) -> DiagnosticName<'_> {
622 DiagnosticName(self)
623 }
624
625 /// Returns true if and only if this `TimeZone` can be succinctly
626 /// serialized.
627 ///
628 /// Basically, this is only `false` when this `TimeZone` was created from
629 /// a `/etc/localtime` for which a valid IANA time zone identifier could
630 /// not be extracted.
631 #[cfg(feature = "serde")]
632 #[inline]
633 pub(crate) fn has_succinct_serialization(&self) -> bool {
634 repr::each! {
635 &self.repr,
636 UTC => true,
637 UNKNOWN => true,
638 FIXED(_offset) => true,
639 STATIC_TZIF(tzif) => tzif.name().is_some(),
640 ARC_TZIF(tzif) => tzif.name().is_some(),
641 ARC_POSIX(_posix) => true,
642 }
643 }
644
645 /// When this time zone was loaded from an IANA time zone database entry,
646 /// then this returns the canonicalized name for that time zone.
647 ///
648 /// # Example
649 ///
650 /// ```
651 /// use jiff::tz::TimeZone;
652 ///
653 /// let tz = TimeZone::get("america/NEW_YORK")?;
654 /// assert_eq!(tz.iana_name(), Some("America/New_York"));
655 ///
656 /// # Ok::<(), Box<dyn std::error::Error>>(())
657 /// ```
658 #[inline]
659 pub fn iana_name(&self) -> Option<&str> {
660 repr::each! {
661 &self.repr,
662 UTC => Some("UTC"),
663 // Note that while `Etc/Unknown` looks like an IANA time zone
664 // identifier, it is specifically and explicitly NOT an IANA time
665 // zone identifier. So we do not return it here if we have an
666 // unknown time zone identifier.
667 UNKNOWN => None,
668 FIXED(_offset) => None,
669 STATIC_TZIF(tzif) => tzif.name(),
670 ARC_TZIF(tzif) => tzif.name(),
671 ARC_POSIX(_posix) => None,
672 }
673 }
674
675 /// Returns true if and only if this time zone is unknown.
676 ///
677 /// This has the special internal identifier of `Etc/Unknown`, and this
678 /// is what will be used when converting a `Zoned` to a string.
679 ///
680 /// Note that while `Etc/Unknown` looks like an IANA time zone identifier,
681 /// it is specifically and explicitly not one. It is reserved and is
682 /// guaranteed to never be an IANA time zone identifier.
683 ///
684 /// An unknown time zone can be created via [`TimeZone::unknown`]. It is
685 /// also returned by [`TimeZone::system`] when a system configured time
686 /// zone could not be found.
687 ///
688 /// # Example
689 ///
690 /// ```
691 /// use jiff::tz::TimeZone;
692 ///
693 /// let tz = TimeZone::unknown();
694 /// assert_eq!(tz.iana_name(), None);
695 /// assert!(tz.is_unknown());
696 /// ```
697 #[inline]
698 pub fn is_unknown(&self) -> bool {
699 self.repr.is_unknown()
700 }
701
702 /// When this time zone is a POSIX time zone, return it.
703 ///
704 /// This doesn't attempt to convert other time zones that are representable
705 /// as POSIX time zones to POSIX time zones (e.g., fixed offset time
706 /// zones). Instead, this only returns something when the actual
707 /// representation of the time zone is a POSIX time zone.
708 #[cfg(feature = "alloc")]
709 #[inline]
710 pub(crate) fn posix_tz(&self) -> Option<&PosixTimeZoneOwned> {
711 repr::each! {
712 &self.repr,
713 UTC => None,
714 UNKNOWN => None,
715 FIXED(_offset) => None,
716 STATIC_TZIF(_tzif) => None,
717 ARC_TZIF(_tzif) => None,
718 ARC_POSIX(posix) => Some(posix),
719 }
720 }
721
722 /// Returns the civil datetime corresponding to the given timestamp in this
723 /// time zone.
724 ///
725 /// This operation is always unambiguous. That is, for any instant in time
726 /// supported by Jiff (that is, a `Timestamp`), there is always precisely
727 /// one civil datetime corresponding to that instant.
728 ///
729 /// Note that this is considered a lower level routine. Consider working
730 /// with zoned datetimes instead, and use [`Zoned::datetime`] to get its
731 /// civil time if necessary.
732 ///
733 /// # Example
734 ///
735 /// ```
736 /// use jiff::{tz::TimeZone, Timestamp};
737 ///
738 /// let tz = TimeZone::get("Europe/Rome")?;
739 /// assert_eq!(
740 /// tz.to_datetime(Timestamp::UNIX_EPOCH).to_string(),
741 /// "1970-01-01T01:00:00",
742 /// );
743 ///
744 /// # Ok::<(), Box<dyn std::error::Error>>(())
745 /// ```
746 ///
747 /// As mentioned above, consider using `Zoned` instead:
748 ///
749 /// ```
750 /// use jiff::{tz::TimeZone, Timestamp};
751 ///
752 /// let zdt = Timestamp::UNIX_EPOCH.in_tz("Europe/Rome")?;
753 /// assert_eq!(zdt.datetime().to_string(), "1970-01-01T01:00:00");
754 ///
755 /// # Ok::<(), Box<dyn std::error::Error>>(())
756 /// ```
757 #[inline]
758 pub fn to_datetime(&self, timestamp: Timestamp) -> DateTime {
759 self.to_offset(timestamp).to_datetime(timestamp)
760 }
761
762 /// Returns the offset corresponding to the given timestamp in this time
763 /// zone.
764 ///
765 /// This operation is always unambiguous. That is, for any instant in time
766 /// supported by Jiff (that is, a `Timestamp`), there is always precisely
767 /// one offset corresponding to that instant.
768 ///
769 /// Given an offset, one can use APIs like [`Offset::to_datetime`] to
770 /// create a civil datetime from a timestamp.
771 ///
772 /// This also returns whether this timestamp is considered to be in
773 /// "daylight saving time," as well as the abbreviation for the time zone
774 /// at this time.
775 ///
776 /// # Example
777 ///
778 /// ```
779 /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp};
780 ///
781 /// let tz = TimeZone::get("America/New_York")?;
782 ///
783 /// // A timestamp in DST in New York.
784 /// let ts = Timestamp::from_second(1_720_493_204)?;
785 /// let offset = tz.to_offset(ts);
786 /// assert_eq!(offset, tz::offset(-4));
787 /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-07-08T22:46:44");
788 ///
789 /// // A timestamp *not* in DST in New York.
790 /// let ts = Timestamp::from_second(1_704_941_204)?;
791 /// let offset = tz.to_offset(ts);
792 /// assert_eq!(offset, tz::offset(-5));
793 /// assert_eq!(offset.to_datetime(ts).to_string(), "2024-01-10T21:46:44");
794 ///
795 /// # Ok::<(), Box<dyn std::error::Error>>(())
796 /// ```
797 #[inline]
798 pub fn to_offset(&self, timestamp: Timestamp) -> Offset {
799 repr::each! {
800 &self.repr,
801 UTC => Offset::UTC,
802 UNKNOWN => Offset::UTC,
803 FIXED(offset) => offset,
804 STATIC_TZIF(tzif) => tzif.to_offset(timestamp),
805 ARC_TZIF(tzif) => tzif.to_offset(timestamp),
806 ARC_POSIX(posix) => posix.to_offset(timestamp),
807 }
808 }
809
810 /// Returns the offset information corresponding to the given timestamp in
811 /// this time zone. This includes the offset along with daylight saving
812 /// time status and a time zone abbreviation.
813 ///
814 /// This is like [`TimeZone::to_offset`], but returns the aforementioned
815 /// extra data in addition to the offset. This data may, in some cases, be
816 /// more expensive to compute.
817 ///
818 /// # Example
819 ///
820 /// ```
821 /// use jiff::{tz::{self, Dst, TimeZone}, Timestamp};
822 ///
823 /// let tz = TimeZone::get("America/New_York")?;
824 ///
825 /// // A timestamp in DST in New York.
826 /// let ts = Timestamp::from_second(1_720_493_204)?;
827 /// let info = tz.to_offset_info(ts);
828 /// assert_eq!(info.offset(), tz::offset(-4));
829 /// assert_eq!(info.dst(), Dst::Yes);
830 /// assert_eq!(info.abbreviation(), "EDT");
831 /// assert_eq!(
832 /// info.offset().to_datetime(ts).to_string(),
833 /// "2024-07-08T22:46:44",
834 /// );
835 ///
836 /// // A timestamp *not* in DST in New York.
837 /// let ts = Timestamp::from_second(1_704_941_204)?;
838 /// let info = tz.to_offset_info(ts);
839 /// assert_eq!(info.offset(), tz::offset(-5));
840 /// assert_eq!(info.dst(), Dst::No);
841 /// assert_eq!(info.abbreviation(), "EST");
842 /// assert_eq!(
843 /// info.offset().to_datetime(ts).to_string(),
844 /// "2024-01-10T21:46:44",
845 /// );
846 ///
847 /// # Ok::<(), Box<dyn std::error::Error>>(())
848 /// ```
849 #[inline]
850 pub fn to_offset_info<'t>(
851 &'t self,
852 timestamp: Timestamp,
853 ) -> TimeZoneOffsetInfo<'t> {
854 repr::each! {
855 &self.repr,
856 UTC => TimeZoneOffsetInfo {
857 offset: Offset::UTC,
858 dst: Dst::No,
859 abbreviation: TimeZoneAbbreviation::Borrowed("UTC"),
860 },
861 UNKNOWN => TimeZoneOffsetInfo {
862 offset: Offset::UTC,
863 dst: Dst::No,
864 // It'd be kinda nice if this were just `ERR` to
865 // indicate an error, but I can't find any precedent
866 // for that. And CLDR says `Etc/Unknown` should behave
867 // like UTC, so... I guess we use UTC here.
868 abbreviation: TimeZoneAbbreviation::Borrowed("UTC"),
869 },
870 FIXED(offset) => {
871 let abbreviation =
872 TimeZoneAbbreviation::Owned(offset.to_array_str());
873 TimeZoneOffsetInfo {
874 offset,
875 dst: Dst::No,
876 abbreviation,
877 }
878 },
879 STATIC_TZIF(tzif) => tzif.to_offset_info(timestamp),
880 ARC_TZIF(tzif) => tzif.to_offset_info(timestamp),
881 ARC_POSIX(posix) => posix.to_offset_info(timestamp),
882 }
883 }
884
885 /// If this time zone is a fixed offset, then this returns the offset.
886 /// If this time zone is not a fixed offset, then an error is returned.
887 ///
888 /// If you just need an offset for a given timestamp, then you can use
889 /// [`TimeZone::to_offset`]. Or, if you need an offset for a civil
890 /// datetime, then you can use [`TimeZone::to_ambiguous_timestamp`] or
891 /// [`TimeZone::to_ambiguous_zoned`], although the result may be ambiguous.
892 ///
893 /// Generally, this routine is useful when you need to know whether the
894 /// time zone is fixed, and you want to get the offset without having to
895 /// specify a timestamp. This is sometimes required for interoperating with
896 /// other datetime systems that need to distinguish between time zones that
897 /// are fixed and time zones that are based on rules such as those found in
898 /// the IANA time zone database.
899 ///
900 /// # Example
901 ///
902 /// ```
903 /// use jiff::tz::{Offset, TimeZone};
904 ///
905 /// let tz = TimeZone::get("America/New_York")?;
906 /// // A named time zone is not a fixed offset
907 /// // and so cannot be converted to an offset
908 /// // without a timestamp or civil datetime.
909 /// assert_eq!(
910 /// tz.to_fixed_offset().unwrap_err().to_string(),
911 /// "cannot convert non-fixed IANA time zone \
912 /// to offset without timestamp or civil datetime",
913 /// );
914 ///
915 /// let tz = TimeZone::UTC;
916 /// // UTC is a fixed offset and so can be converted
917 /// // without a timestamp.
918 /// assert_eq!(tz.to_fixed_offset()?, Offset::UTC);
919 ///
920 /// // And of course, creating a time zone from a
921 /// // fixed offset results in a fixed offset time
922 /// // zone too:
923 /// let tz = TimeZone::fixed(jiff::tz::offset(-10));
924 /// assert_eq!(tz.to_fixed_offset()?, jiff::tz::offset(-10));
925 ///
926 /// # Ok::<(), Box<dyn std::error::Error>>(())
927 /// ```
928 #[inline]
929 pub fn to_fixed_offset(&self) -> Result<Offset, Error> {
930 let mkerr = || {
931 err!(
932 "cannot convert non-fixed {kind} time zone to offset \
933 without timestamp or civil datetime",
934 kind = self.kind_description(),
935 )
936 };
937 repr::each! {
938 &self.repr,
939 UTC => Ok(Offset::UTC),
940 UNKNOWN => Ok(Offset::UTC),
941 FIXED(offset) => Ok(offset),
942 STATIC_TZIF(_tzif) => Err(mkerr()),
943 ARC_TZIF(_tzif) => Err(mkerr()),
944 ARC_POSIX(_posix) => Err(mkerr()),
945 }
946 }
947
948 /// Converts a civil datetime to a [`Zoned`] in this time zone.
949 ///
950 /// The given civil datetime may be ambiguous in this time zone. A civil
951 /// datetime is ambiguous when either of the following occurs:
952 ///
953 /// * When the civil datetime falls into a "gap." That is, when there is a
954 /// jump forward in time where a span of time does not appear on the clocks
955 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
956 /// into daylight saving time.
957 /// * When the civil datetime falls into a "fold." That is, when there is
958 /// a jump backward in time where a span of time is _repeated_ on the
959 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
960 /// backward out of daylight saving time.
961 ///
962 /// This routine automatically resolves both of the above ambiguities via
963 /// the
964 /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible)
965 /// strategy. That in, the case of a gap, the time after the gap is used.
966 /// In the case of a fold, the first repetition of the clock time is used.
967 ///
968 /// # Example
969 ///
970 /// This example shows how disambiguation works:
971 ///
972 /// ```
973 /// use jiff::{civil::date, tz::TimeZone};
974 ///
975 /// let tz = TimeZone::get("America/New_York")?;
976 ///
977 /// // This demonstrates disambiguation behavior for a gap.
978 /// let zdt = tz.to_zoned(date(2024, 3, 10).at(2, 30, 0, 0))?;
979 /// assert_eq!(zdt.to_string(), "2024-03-10T03:30:00-04:00[America/New_York]");
980 /// // This demonstrates disambiguation behavior for a fold.
981 /// // Notice the offset: the -04 corresponds to the time while
982 /// // still in DST. The second repetition of the 1 o'clock hour
983 /// // occurs outside of DST, in "standard" time, with the offset -5.
984 /// let zdt = tz.to_zoned(date(2024, 11, 3).at(1, 30, 0, 0))?;
985 /// assert_eq!(zdt.to_string(), "2024-11-03T01:30:00-04:00[America/New_York]");
986 ///
987 /// # Ok::<(), Box<dyn std::error::Error>>(())
988 /// ```
989 #[inline]
990 pub fn to_zoned(&self, dt: DateTime) -> Result<Zoned, Error> {
991 self.to_ambiguous_zoned(dt).compatible()
992 }
993
994 /// Converts a civil datetime to a possibly ambiguous zoned datetime in
995 /// this time zone.
996 ///
997 /// The given civil datetime may be ambiguous in this time zone. A civil
998 /// datetime is ambiguous when either of the following occurs:
999 ///
1000 /// * When the civil datetime falls into a "gap." That is, when there is a
1001 /// jump forward in time where a span of time does not appear on the clocks
1002 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
1003 /// into daylight saving time.
1004 /// * When the civil datetime falls into a "fold." That is, when there is
1005 /// a jump backward in time where a span of time is _repeated_ on the
1006 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
1007 /// backward out of daylight saving time.
1008 ///
1009 /// Unlike [`TimeZone::to_zoned`], this method does not do any automatic
1010 /// disambiguation. Instead, callers are expected to use the methods on
1011 /// [`AmbiguousZoned`] to resolve any ambiguity, if it occurs.
1012 ///
1013 /// # Example
1014 ///
1015 /// This example shows how to return an error when the civil datetime given
1016 /// is ambiguous:
1017 ///
1018 /// ```
1019 /// use jiff::{civil::date, tz::TimeZone};
1020 ///
1021 /// let tz = TimeZone::get("America/New_York")?;
1022 ///
1023 /// // This is not ambiguous:
1024 /// let dt = date(2024, 3, 10).at(1, 0, 0, 0);
1025 /// assert_eq!(
1026 /// tz.to_ambiguous_zoned(dt).unambiguous()?.to_string(),
1027 /// "2024-03-10T01:00:00-05:00[America/New_York]",
1028 /// );
1029 /// // But this is a gap, and thus ambiguous! So an error is returned.
1030 /// let dt = date(2024, 3, 10).at(2, 0, 0, 0);
1031 /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err());
1032 /// // And so is this, because it's a fold.
1033 /// let dt = date(2024, 11, 3).at(1, 0, 0, 0);
1034 /// assert!(tz.to_ambiguous_zoned(dt).unambiguous().is_err());
1035 ///
1036 /// # Ok::<(), Box<dyn std::error::Error>>(())
1037 /// ```
1038 #[inline]
1039 pub fn to_ambiguous_zoned(&self, dt: DateTime) -> AmbiguousZoned {
1040 self.clone().into_ambiguous_zoned(dt)
1041 }
1042
1043 /// Converts a civil datetime to a possibly ambiguous zoned datetime in
1044 /// this time zone, and does so by assuming ownership of this `TimeZone`.
1045 ///
1046 /// This is identical to [`TimeZone::to_ambiguous_zoned`], but it avoids
1047 /// a `TimeZone::clone()` call. (Which are cheap, but not completely free.)
1048 ///
1049 /// # Example
1050 ///
1051 /// This example shows how to create a `Zoned` value from a `TimeZone`
1052 /// and a `DateTime` without cloning the `TimeZone`:
1053 ///
1054 /// ```
1055 /// use jiff::{civil::date, tz::TimeZone};
1056 ///
1057 /// let tz = TimeZone::get("America/New_York")?;
1058 /// let dt = date(2024, 3, 10).at(1, 0, 0, 0);
1059 /// assert_eq!(
1060 /// tz.into_ambiguous_zoned(dt).unambiguous()?.to_string(),
1061 /// "2024-03-10T01:00:00-05:00[America/New_York]",
1062 /// );
1063 ///
1064 /// # Ok::<(), Box<dyn std::error::Error>>(())
1065 /// ```
1066 #[inline]
1067 pub fn into_ambiguous_zoned(self, dt: DateTime) -> AmbiguousZoned {
1068 self.to_ambiguous_timestamp(dt).into_ambiguous_zoned(self)
1069 }
1070
1071 /// Converts a civil datetime to a [`Timestamp`] in this time zone.
1072 ///
1073 /// The given civil datetime may be ambiguous in this time zone. A civil
1074 /// datetime is ambiguous when either of the following occurs:
1075 ///
1076 /// * When the civil datetime falls into a "gap." That is, when there is a
1077 /// jump forward in time where a span of time does not appear on the clocks
1078 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
1079 /// into daylight saving time.
1080 /// * When the civil datetime falls into a "fold." That is, when there is
1081 /// a jump backward in time where a span of time is _repeated_ on the
1082 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
1083 /// backward out of daylight saving time.
1084 ///
1085 /// This routine automatically resolves both of the above ambiguities via
1086 /// the
1087 /// [`Disambiguation::Compatible`](crate::tz::Disambiguation::Compatible)
1088 /// strategy. That in, the case of a gap, the time after the gap is used.
1089 /// In the case of a fold, the first repetition of the clock time is used.
1090 ///
1091 /// This routine is identical to [`TimeZone::to_zoned`], except it returns
1092 /// a `Timestamp` instead of a zoned datetime. The benefit of this
1093 /// method is that it never requires cloning or consuming ownership of a
1094 /// `TimeZone`, and it doesn't require construction of `Zoned` which has
1095 /// a small but non-zero cost. (This is partially because a `Zoned` value
1096 /// contains a `TimeZone`, but of course, a `Timestamp` does not.)
1097 ///
1098 /// # Example
1099 ///
1100 /// This example shows how disambiguation works:
1101 ///
1102 /// ```
1103 /// use jiff::{civil::date, tz::TimeZone};
1104 ///
1105 /// let tz = TimeZone::get("America/New_York")?;
1106 ///
1107 /// // This demonstrates disambiguation behavior for a gap.
1108 /// let ts = tz.to_timestamp(date(2024, 3, 10).at(2, 30, 0, 0))?;
1109 /// assert_eq!(ts.to_string(), "2024-03-10T07:30:00Z");
1110 /// // This demonstrates disambiguation behavior for a fold.
1111 /// // Notice the offset: the -04 corresponds to the time while
1112 /// // still in DST. The second repetition of the 1 o'clock hour
1113 /// // occurs outside of DST, in "standard" time, with the offset -5.
1114 /// let ts = tz.to_timestamp(date(2024, 11, 3).at(1, 30, 0, 0))?;
1115 /// assert_eq!(ts.to_string(), "2024-11-03T05:30:00Z");
1116 ///
1117 /// # Ok::<(), Box<dyn std::error::Error>>(())
1118 /// ```
1119 #[inline]
1120 pub fn to_timestamp(&self, dt: DateTime) -> Result<Timestamp, Error> {
1121 self.to_ambiguous_timestamp(dt).compatible()
1122 }
1123
1124 /// Converts a civil datetime to a possibly ambiguous timestamp in
1125 /// this time zone.
1126 ///
1127 /// The given civil datetime may be ambiguous in this time zone. A civil
1128 /// datetime is ambiguous when either of the following occurs:
1129 ///
1130 /// * When the civil datetime falls into a "gap." That is, when there is a
1131 /// jump forward in time where a span of time does not appear on the clocks
1132 /// in this time zone. This _typically_ manifests as a 1 hour jump forward
1133 /// into daylight saving time.
1134 /// * When the civil datetime falls into a "fold." That is, when there is
1135 /// a jump backward in time where a span of time is _repeated_ on the
1136 /// clocks in this time zone. This _typically_ manifests as a 1 hour jump
1137 /// backward out of daylight saving time.
1138 ///
1139 /// Unlike [`TimeZone::to_timestamp`], this method does not do any
1140 /// automatic disambiguation. Instead, callers are expected to use the
1141 /// methods on [`AmbiguousTimestamp`] to resolve any ambiguity, if it
1142 /// occurs.
1143 ///
1144 /// This routine is identical to [`TimeZone::to_ambiguous_zoned`], except
1145 /// it returns an `AmbiguousTimestamp` instead of a `AmbiguousZoned`. The
1146 /// benefit of this method is that it never requires cloning or consuming
1147 /// ownership of a `TimeZone`, and it doesn't require construction of
1148 /// `Zoned` which has a small but non-zero cost. (This is partially because
1149 /// a `Zoned` value contains a `TimeZone`, but of course, a `Timestamp`
1150 /// does not.)
1151 ///
1152 /// # Example
1153 ///
1154 /// This example shows how to return an error when the civil datetime given
1155 /// is ambiguous:
1156 ///
1157 /// ```
1158 /// use jiff::{civil::date, tz::TimeZone};
1159 ///
1160 /// let tz = TimeZone::get("America/New_York")?;
1161 ///
1162 /// // This is not ambiguous:
1163 /// let dt = date(2024, 3, 10).at(1, 0, 0, 0);
1164 /// assert_eq!(
1165 /// tz.to_ambiguous_timestamp(dt).unambiguous()?.to_string(),
1166 /// "2024-03-10T06:00:00Z",
1167 /// );
1168 /// // But this is a gap, and thus ambiguous! So an error is returned.
1169 /// let dt = date(2024, 3, 10).at(2, 0, 0, 0);
1170 /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err());
1171 /// // And so is this, because it's a fold.
1172 /// let dt = date(2024, 11, 3).at(1, 0, 0, 0);
1173 /// assert!(tz.to_ambiguous_timestamp(dt).unambiguous().is_err());
1174 ///
1175 /// # Ok::<(), Box<dyn std::error::Error>>(())
1176 /// ```
1177 #[inline]
1178 pub fn to_ambiguous_timestamp(&self, dt: DateTime) -> AmbiguousTimestamp {
1179 let ambiguous_kind = repr::each! {
1180 &self.repr,
1181 UTC => AmbiguousOffset::Unambiguous { offset: Offset::UTC },
1182 UNKNOWN => AmbiguousOffset::Unambiguous { offset: Offset::UTC },
1183 FIXED(offset) => AmbiguousOffset::Unambiguous { offset },
1184 STATIC_TZIF(tzif) => tzif.to_ambiguous_kind(dt),
1185 ARC_TZIF(tzif) => tzif.to_ambiguous_kind(dt),
1186 ARC_POSIX(posix) => posix.to_ambiguous_kind(dt),
1187 };
1188 AmbiguousTimestamp::new(dt, ambiguous_kind)
1189 }
1190
1191 /// Returns an iterator of time zone transitions preceding the given
1192 /// timestamp. The iterator returned yields [`TimeZoneTransition`]
1193 /// elements.
1194 ///
1195 /// The order of the iterator returned moves backward through time. If
1196 /// there is a previous transition, then the timestamp of that transition
1197 /// is guaranteed to be strictly less than the timestamp given.
1198 ///
1199 /// This is a low level API that you generally shouldn't need. It's
1200 /// useful in cases where you need to know something about the specific
1201 /// instants at which time zone transitions occur. For example, an embedded
1202 /// device might need to be explicitly programmed with daylight saving
1203 /// time transitions. APIs like this enable callers to explore those
1204 /// transitions.
1205 ///
1206 /// A time zone transition refers to a specific point in time when the
1207 /// offset from UTC for a particular geographical region changes. This
1208 /// is usually a result of daylight saving time, but it can also occur
1209 /// when a geographic region changes its permanent offset from UTC.
1210 ///
1211 /// The iterator returned is not guaranteed to yield any elements. For
1212 /// example, this occurs with a fixed offset time zone. Logically, it
1213 /// would also be possible for the iterator to be infinite, except that
1214 /// eventually the timestamp would overflow Jiff's minimum timestamp
1215 /// value, at which point, iteration stops.
1216 ///
1217 /// # Example: time since the previous transition
1218 ///
1219 /// This example shows how much time has passed since the previous time
1220 /// zone transition:
1221 ///
1222 /// ```
1223 /// use jiff::{Unit, Zoned};
1224 ///
1225 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1226 /// let trans = now.time_zone().preceding(now.timestamp()).next().unwrap();
1227 /// let prev_at = trans.timestamp().to_zoned(now.time_zone().clone());
1228 /// let span = now.since((Unit::Year, &prev_at))?;
1229 /// assert_eq!(format!("{span:#}"), "1mo 27d 17h 25m");
1230 ///
1231 /// # Ok::<(), Box<dyn std::error::Error>>(())
1232 /// ```
1233 ///
1234 /// # Example: show the 5 previous time zone transitions
1235 ///
1236 /// This shows how to find the 5 preceding time zone transitions (from a
1237 /// particular datetime) for a particular time zone:
1238 ///
1239 /// ```
1240 /// use jiff::{tz::offset, Zoned};
1241 ///
1242 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1243 /// let transitions = now
1244 /// .time_zone()
1245 /// .preceding(now.timestamp())
1246 /// .take(5)
1247 /// .map(|t| (
1248 /// t.timestamp().to_zoned(now.time_zone().clone()),
1249 /// t.offset(),
1250 /// t.abbreviation().to_string(),
1251 /// ))
1252 /// .collect::<Vec<_>>();
1253 /// assert_eq!(transitions, vec![
1254 /// ("2024-11-03 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1255 /// ("2024-03-10 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1256 /// ("2023-11-05 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1257 /// ("2023-03-12 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1258 /// ("2022-11-06 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1259 /// ]);
1260 ///
1261 /// # Ok::<(), Box<dyn std::error::Error>>(())
1262 /// ```
1263 #[inline]
1264 pub fn preceding<'t>(
1265 &'t self,
1266 timestamp: Timestamp,
1267 ) -> TimeZonePrecedingTransitions<'t> {
1268 TimeZonePrecedingTransitions { tz: self, cur: timestamp }
1269 }
1270
1271 /// Returns an iterator of time zone transitions following the given
1272 /// timestamp. The iterator returned yields [`TimeZoneTransition`]
1273 /// elements.
1274 ///
1275 /// The order of the iterator returned moves forward through time. If
1276 /// there is a following transition, then the timestamp of that transition
1277 /// is guaranteed to be strictly greater than the timestamp given.
1278 ///
1279 /// This is a low level API that you generally shouldn't need. It's
1280 /// useful in cases where you need to know something about the specific
1281 /// instants at which time zone transitions occur. For example, an embedded
1282 /// device might need to be explicitly programmed with daylight saving
1283 /// time transitions. APIs like this enable callers to explore those
1284 /// transitions.
1285 ///
1286 /// A time zone transition refers to a specific point in time when the
1287 /// offset from UTC for a particular geographical region changes. This
1288 /// is usually a result of daylight saving time, but it can also occur
1289 /// when a geographic region changes its permanent offset from UTC.
1290 ///
1291 /// The iterator returned is not guaranteed to yield any elements. For
1292 /// example, this occurs with a fixed offset time zone. Logically, it
1293 /// would also be possible for the iterator to be infinite, except that
1294 /// eventually the timestamp would overflow Jiff's maximum timestamp
1295 /// value, at which point, iteration stops.
1296 ///
1297 /// # Example: time until the next transition
1298 ///
1299 /// This example shows how much time is left until the next time zone
1300 /// transition:
1301 ///
1302 /// ```
1303 /// use jiff::{Unit, Zoned};
1304 ///
1305 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1306 /// let trans = now.time_zone().following(now.timestamp()).next().unwrap();
1307 /// let next_at = trans.timestamp().to_zoned(now.time_zone().clone());
1308 /// let span = now.until((Unit::Year, &next_at))?;
1309 /// assert_eq!(format!("{span:#}"), "2mo 8d 7h 35m");
1310 ///
1311 /// # Ok::<(), Box<dyn std::error::Error>>(())
1312 /// ```
1313 ///
1314 /// # Example: show the 5 next time zone transitions
1315 ///
1316 /// This shows how to find the 5 following time zone transitions (from a
1317 /// particular datetime) for a particular time zone:
1318 ///
1319 /// ```
1320 /// use jiff::{tz::offset, Zoned};
1321 ///
1322 /// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1323 /// let transitions = now
1324 /// .time_zone()
1325 /// .following(now.timestamp())
1326 /// .take(5)
1327 /// .map(|t| (
1328 /// t.timestamp().to_zoned(now.time_zone().clone()),
1329 /// t.offset(),
1330 /// t.abbreviation().to_string(),
1331 /// ))
1332 /// .collect::<Vec<_>>();
1333 /// assert_eq!(transitions, vec![
1334 /// ("2025-03-09 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1335 /// ("2025-11-02 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1336 /// ("2026-03-08 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1337 /// ("2026-11-01 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1338 /// ("2027-03-14 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1339 /// ]);
1340 ///
1341 /// # Ok::<(), Box<dyn std::error::Error>>(())
1342 /// ```
1343 #[inline]
1344 pub fn following<'t>(
1345 &'t self,
1346 timestamp: Timestamp,
1347 ) -> TimeZoneFollowingTransitions<'t> {
1348 TimeZoneFollowingTransitions { tz: self, cur: timestamp }
1349 }
1350
1351 /// Used by the "preceding transitions" iterator.
1352 #[inline]
1353 fn previous_transition(
1354 &self,
1355 timestamp: Timestamp,
1356 ) -> Option<TimeZoneTransition> {
1357 repr::each! {
1358 &self.repr,
1359 UTC => None,
1360 UNKNOWN => None,
1361 FIXED(_offset) => None,
1362 STATIC_TZIF(tzif) => tzif.previous_transition(timestamp),
1363 ARC_TZIF(tzif) => tzif.previous_transition(timestamp),
1364 ARC_POSIX(posix) => posix.previous_transition(timestamp),
1365 }
1366 }
1367
1368 /// Used by the "following transitions" iterator.
1369 #[inline]
1370 fn next_transition(
1371 &self,
1372 timestamp: Timestamp,
1373 ) -> Option<TimeZoneTransition> {
1374 repr::each! {
1375 &self.repr,
1376 UTC => None,
1377 UNKNOWN => None,
1378 FIXED(_offset) => None,
1379 STATIC_TZIF(tzif) => tzif.next_transition(timestamp),
1380 ARC_TZIF(tzif) => tzif.next_transition(timestamp),
1381 ARC_POSIX(posix) => posix.next_transition(timestamp),
1382 }
1383 }
1384
1385 /// Returns a short description about the kind of this time zone.
1386 ///
1387 /// This is useful in error messages.
1388 fn kind_description(&self) -> &str {
1389 repr::each! {
1390 &self.repr,
1391 UTC => "UTC",
1392 UNKNOWN => "Etc/Unknown",
1393 FIXED(_offset) => "fixed",
1394 STATIC_TZIF(_tzif) => "IANA",
1395 ARC_TZIF(_tzif) => "IANA",
1396 ARC_POSIX(_posix) => "POSIX",
1397 }
1398 }
1399}
1400
1401// Exposed APIs for Jiff's time zone proc macro.
1402//
1403// These are NOT part of Jiff's public API. There are *zero* semver guarantees
1404// for them.
1405#[doc(hidden)]
1406impl TimeZone {
1407 pub const fn __internal_from_tzif(
1408 tzif: &'static crate::tz::tzif::TzifStatic,
1409 ) -> TimeZone {
1410 let repr = Repr::static_tzif(tzif);
1411 TimeZone { repr }
1412 }
1413
1414 /// Returns a dumb copy of this `TimeZone`.
1415 ///
1416 /// # Safety
1417 ///
1418 /// Callers must ensure that this time zone is UTC, unknown, a fixed
1419 /// offset or created with `TimeZone::__internal_from_tzif`.
1420 ///
1421 /// Namely, this specifically does not increment the ref count for
1422 /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`.
1423 /// This means that incorrect usage of this routine can lead to
1424 /// use-after-free.
1425 #[inline]
1426 pub const unsafe fn copy(&self) -> TimeZone {
1427 // SAFETY: Requirements are forwarded to the caller.
1428 unsafe { TimeZone { repr: self.repr.copy() } }
1429 }
1430}
1431
1432impl core::fmt::Debug for TimeZone {
1433 #[inline]
1434 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1435 f.debug_tuple("TimeZone").field(&self.repr).finish()
1436 }
1437}
1438
1439/// A representation a single time zone transition.
1440///
1441/// A time zone transition is an instant in time the marks the beginning of
1442/// a change in the offset from UTC that civil time is computed from in a
1443/// particular time zone. For example, when daylight saving time comes into
1444/// effect (or goes away). Another example is when a geographic region changes
1445/// its permanent offset from UTC.
1446///
1447/// This is a low level type that you generally shouldn't need. It's useful in
1448/// cases where you need to know something about the specific instants at which
1449/// time zone transitions occur. For example, an embedded device might need to
1450/// be explicitly programmed with daylight saving time transitions. APIs like
1451/// this enable callers to explore those transitions.
1452///
1453/// This type is yielded by the iterators
1454/// [`TimeZonePrecedingTransitions`] and
1455/// [`TimeZoneFollowingTransitions`]. The iterators are created by
1456/// [`TimeZone::preceding`] and [`TimeZone::following`], respectively.
1457///
1458/// # Example
1459///
1460/// This shows a somewhat silly example that finds all of the unique civil
1461/// (or "clock" or "local") times at which a time zone transition has occurred
1462/// in a particular time zone:
1463///
1464/// ```
1465/// use std::collections::BTreeSet;
1466/// use jiff::{civil, tz::TimeZone};
1467///
1468/// let tz = TimeZone::get("America/New_York")?;
1469/// let now = civil::date(2024, 12, 31).at(18, 25, 0, 0).to_zoned(tz.clone())?;
1470/// let mut set = BTreeSet::new();
1471/// for trans in tz.preceding(now.timestamp()) {
1472/// let time = tz.to_datetime(trans.timestamp()).time();
1473/// set.insert(time);
1474/// }
1475/// assert_eq!(Vec::from_iter(set), vec![
1476/// civil::time(1, 0, 0, 0), // typical transition out of DST
1477/// civil::time(3, 0, 0, 0), // typical transition into DST
1478/// civil::time(12, 0, 0, 0), // from when IANA starts keeping track
1479/// civil::time(19, 0, 0, 0), // from World War 2
1480/// ]);
1481///
1482/// # Ok::<(), Box<dyn std::error::Error>>(())
1483/// ```
1484#[derive(Clone, Debug)]
1485pub struct TimeZoneTransition<'t> {
1486 // We don't currently do anything smart to make iterating over
1487 // transitions faster. We could if we pushed the iterator impl down into
1488 // the respective modules (`posix` and `tzif`), but it's not clear such
1489 // optimization is really worth it. However, this API should permit that
1490 // kind of optimization in the future.
1491 pub(crate) timestamp: Timestamp,
1492 pub(crate) offset: Offset,
1493 pub(crate) abbrev: &'t str,
1494 pub(crate) dst: Dst,
1495}
1496
1497impl<'t> TimeZoneTransition<'t> {
1498 /// Returns the timestamp at which this transition began.
1499 ///
1500 /// # Example
1501 ///
1502 /// ```
1503 /// use jiff::{civil, tz::TimeZone};
1504 ///
1505 /// let tz = TimeZone::get("US/Eastern")?;
1506 /// // Look for the first time zone transition in `US/Eastern` following
1507 /// // 2023-03-09 00:00:00.
1508 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1509 /// let next = tz.following(start).next().unwrap();
1510 /// assert_eq!(
1511 /// next.timestamp().to_zoned(tz.clone()).to_string(),
1512 /// "2024-03-10T03:00:00-04:00[US/Eastern]",
1513 /// );
1514 ///
1515 /// # Ok::<(), Box<dyn std::error::Error>>(())
1516 /// ```
1517 #[inline]
1518 pub fn timestamp(&self) -> Timestamp {
1519 self.timestamp
1520 }
1521
1522 /// Returns the offset corresponding to this time zone transition. All
1523 /// instants at and following this transition's timestamp (and before the
1524 /// next transition's timestamp) need to apply this offset from UTC to get
1525 /// the civil or "local" time in the corresponding time zone.
1526 ///
1527 /// # Example
1528 ///
1529 /// ```
1530 /// use jiff::{civil, tz::{TimeZone, offset}};
1531 ///
1532 /// let tz = TimeZone::get("US/Eastern")?;
1533 /// // Get the offset of the next transition after
1534 /// // 2023-03-09 00:00:00.
1535 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1536 /// let next = tz.following(start).next().unwrap();
1537 /// assert_eq!(next.offset(), offset(-4));
1538 /// // Or go backwards to find the previous transition.
1539 /// let prev = tz.preceding(start).next().unwrap();
1540 /// assert_eq!(prev.offset(), offset(-5));
1541 ///
1542 /// # Ok::<(), Box<dyn std::error::Error>>(())
1543 /// ```
1544 #[inline]
1545 pub fn offset(&self) -> Offset {
1546 self.offset
1547 }
1548
1549 /// Returns the time zone abbreviation corresponding to this time
1550 /// zone transition. All instants at and following this transition's
1551 /// timestamp (and before the next transition's timestamp) may use this
1552 /// abbreviation when creating a human readable string. For example,
1553 /// this is the abbreviation used with the `%Z` specifier with Jiff's
1554 /// [`fmt::strtime`](crate::fmt::strtime) module.
1555 ///
1556 /// Note that abbreviations can to be ambiguous. For example, the
1557 /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`,
1558 /// `America/Chicago` and `America/Havana`.
1559 ///
1560 /// The lifetime of the string returned is tied to this
1561 /// `TimeZoneTransition`, which may be shorter than `'t` (the lifetime of
1562 /// the time zone this transition was created from).
1563 ///
1564 /// # Example
1565 ///
1566 /// ```
1567 /// use jiff::{civil, tz::TimeZone};
1568 ///
1569 /// let tz = TimeZone::get("US/Eastern")?;
1570 /// // Get the abbreviation of the next transition after
1571 /// // 2023-03-09 00:00:00.
1572 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1573 /// let next = tz.following(start).next().unwrap();
1574 /// assert_eq!(next.abbreviation(), "EDT");
1575 /// // Or go backwards to find the previous transition.
1576 /// let prev = tz.preceding(start).next().unwrap();
1577 /// assert_eq!(prev.abbreviation(), "EST");
1578 ///
1579 /// # Ok::<(), Box<dyn std::error::Error>>(())
1580 /// ```
1581 #[inline]
1582 pub fn abbreviation<'a>(&'a self) -> &'a str {
1583 self.abbrev
1584 }
1585
1586 /// Returns whether daylight saving time is enabled for this time zone
1587 /// transition.
1588 ///
1589 /// Callers should generally treat this as informational only. In
1590 /// particular, not all time zone transitions are related to daylight
1591 /// saving time. For example, some transitions are a result of a region
1592 /// permanently changing their offset from UTC.
1593 ///
1594 /// # Example
1595 ///
1596 /// ```
1597 /// use jiff::{civil, tz::{Dst, TimeZone}};
1598 ///
1599 /// let tz = TimeZone::get("US/Eastern")?;
1600 /// // Get the DST status of the next transition after
1601 /// // 2023-03-09 00:00:00.
1602 /// let start = civil::date(2024, 3, 9).to_zoned(tz.clone())?.timestamp();
1603 /// let next = tz.following(start).next().unwrap();
1604 /// assert_eq!(next.dst(), Dst::Yes);
1605 /// // Or go backwards to find the previous transition.
1606 /// let prev = tz.preceding(start).next().unwrap();
1607 /// assert_eq!(prev.dst(), Dst::No);
1608 ///
1609 /// # Ok::<(), Box<dyn std::error::Error>>(())
1610 /// ```
1611 #[inline]
1612 pub fn dst(&self) -> Dst {
1613 self.dst
1614 }
1615}
1616
1617/// An offset along with DST status and a time zone abbreviation.
1618///
1619/// This information can be computed from a [`TimeZone`] given a [`Timestamp`]
1620/// via [`TimeZone::to_offset_info`].
1621///
1622/// Generally, the extra information associated with the offset is not commonly
1623/// needed. And indeed, inspecting the daylight saving time status of a
1624/// particular instant in a time zone _usually_ leads to bugs. For example, not
1625/// all time zone transitions are the result of daylight saving time. Some are
1626/// the result of permanent changes to the standard UTC offset of a region.
1627///
1628/// This information is available via an API distinct from
1629/// [`TimeZone::to_offset`] because it is not commonly needed and because it
1630/// can sometimes be more expensive to compute.
1631///
1632/// The main use case for daylight saving time status or time zone
1633/// abbreviations is for formatting datetimes in an end user's locale. If you
1634/// want this, consider using the [`icu`] crate via [`jiff-icu`].
1635///
1636/// The lifetime parameter `'t` corresponds to the lifetime of the `TimeZone`
1637/// that this info was extracted from.
1638///
1639/// # Example
1640///
1641/// ```
1642/// use jiff::{tz::{self, Dst, TimeZone}, Timestamp};
1643///
1644/// let tz = TimeZone::get("America/New_York")?;
1645///
1646/// // A timestamp in DST in New York.
1647/// let ts = Timestamp::from_second(1_720_493_204)?;
1648/// let info = tz.to_offset_info(ts);
1649/// assert_eq!(info.offset(), tz::offset(-4));
1650/// assert_eq!(info.dst(), Dst::Yes);
1651/// assert_eq!(info.abbreviation(), "EDT");
1652/// assert_eq!(
1653/// info.offset().to_datetime(ts).to_string(),
1654/// "2024-07-08T22:46:44",
1655/// );
1656///
1657/// // A timestamp *not* in DST in New York.
1658/// let ts = Timestamp::from_second(1_704_941_204)?;
1659/// let info = tz.to_offset_info(ts);
1660/// assert_eq!(info.offset(), tz::offset(-5));
1661/// assert_eq!(info.dst(), Dst::No);
1662/// assert_eq!(info.abbreviation(), "EST");
1663/// assert_eq!(
1664/// info.offset().to_datetime(ts).to_string(),
1665/// "2024-01-10T21:46:44",
1666/// );
1667///
1668/// # Ok::<(), Box<dyn std::error::Error>>(())
1669/// ```
1670///
1671/// [`icu`]: https://docs.rs/icu
1672/// [`jiff-icu`]: https://docs.rs/jiff-icu
1673#[derive(Clone, Debug, Eq, Hash, PartialEq)]
1674pub struct TimeZoneOffsetInfo<'t> {
1675 pub(crate) offset: Offset,
1676 pub(crate) dst: Dst,
1677 pub(crate) abbreviation: TimeZoneAbbreviation<'t>,
1678}
1679
1680impl<'t> TimeZoneOffsetInfo<'t> {
1681 /// Returns the offset.
1682 ///
1683 /// The offset is duration, from UTC, that should be used to offset the
1684 /// civil time in a particular location.
1685 ///
1686 /// # Example
1687 ///
1688 /// ```
1689 /// use jiff::{civil, tz::{TimeZone, offset}};
1690 ///
1691 /// let tz = TimeZone::get("US/Eastern")?;
1692 /// // Get the offset for 2023-03-10 00:00:00.
1693 /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp();
1694 /// let info = tz.to_offset_info(start);
1695 /// assert_eq!(info.offset(), offset(-5));
1696 /// // Go forward a day and notice the offset changes due to DST!
1697 /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp();
1698 /// let info = tz.to_offset_info(start);
1699 /// assert_eq!(info.offset(), offset(-4));
1700 ///
1701 /// # Ok::<(), Box<dyn std::error::Error>>(())
1702 /// ```
1703 #[inline]
1704 pub fn offset(&self) -> Offset {
1705 self.offset
1706 }
1707
1708 /// Returns the time zone abbreviation corresponding to this offset info.
1709 ///
1710 /// Note that abbreviations can to be ambiguous. For example, the
1711 /// abbreviation `CST` can be used for the time zones `Asia/Shanghai`,
1712 /// `America/Chicago` and `America/Havana`.
1713 ///
1714 /// The lifetime of the string returned is tied to this
1715 /// `TimeZoneOffsetInfo`, which may be shorter than `'t` (the lifetime of
1716 /// the time zone this transition was created from).
1717 ///
1718 /// # Example
1719 ///
1720 /// ```
1721 /// use jiff::{civil, tz::TimeZone};
1722 ///
1723 /// let tz = TimeZone::get("US/Eastern")?;
1724 /// // Get the time zone abbreviation for 2023-03-10 00:00:00.
1725 /// let start = civil::date(2024, 3, 10).to_zoned(tz.clone())?.timestamp();
1726 /// let info = tz.to_offset_info(start);
1727 /// assert_eq!(info.abbreviation(), "EST");
1728 /// // Go forward a day and notice the abbreviation changes due to DST!
1729 /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp();
1730 /// let info = tz.to_offset_info(start);
1731 /// assert_eq!(info.abbreviation(), "EDT");
1732 ///
1733 /// # Ok::<(), Box<dyn std::error::Error>>(())
1734 /// ```
1735 #[inline]
1736 pub fn abbreviation(&self) -> &str {
1737 self.abbreviation.as_str()
1738 }
1739
1740 /// Returns whether daylight saving time is enabled for this offset
1741 /// info.
1742 ///
1743 /// Callers should generally treat this as informational only. In
1744 /// particular, not all time zone transitions are related to daylight
1745 /// saving time. For example, some transitions are a result of a region
1746 /// permanently changing their offset from UTC.
1747 ///
1748 /// # Example
1749 ///
1750 /// ```
1751 /// use jiff::{civil, tz::{Dst, TimeZone}};
1752 ///
1753 /// let tz = TimeZone::get("US/Eastern")?;
1754 /// // Get the DST status of 2023-03-11 00:00:00.
1755 /// let start = civil::date(2024, 3, 11).to_zoned(tz.clone())?.timestamp();
1756 /// let info = tz.to_offset_info(start);
1757 /// assert_eq!(info.dst(), Dst::Yes);
1758 ///
1759 /// # Ok::<(), Box<dyn std::error::Error>>(())
1760 /// ```
1761 #[inline]
1762 pub fn dst(&self) -> Dst {
1763 self.dst
1764 }
1765}
1766
1767/// An iterator over time zone transitions going backward in time.
1768///
1769/// This iterator is created by [`TimeZone::preceding`].
1770///
1771/// # Example: show the 5 previous time zone transitions
1772///
1773/// This shows how to find the 5 preceding time zone transitions (from a
1774/// particular datetime) for a particular time zone:
1775///
1776/// ```
1777/// use jiff::{tz::offset, Zoned};
1778///
1779/// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1780/// let transitions = now
1781/// .time_zone()
1782/// .preceding(now.timestamp())
1783/// .take(5)
1784/// .map(|t| (
1785/// t.timestamp().to_zoned(now.time_zone().clone()),
1786/// t.offset(),
1787/// t.abbreviation().to_string(),
1788/// ))
1789/// .collect::<Vec<_>>();
1790/// assert_eq!(transitions, vec![
1791/// ("2024-11-03 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1792/// ("2024-03-10 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1793/// ("2023-11-05 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1794/// ("2023-03-12 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1795/// ("2022-11-06 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1796/// ]);
1797///
1798/// # Ok::<(), Box<dyn std::error::Error>>(())
1799/// ```
1800#[derive(Clone, Debug)]
1801pub struct TimeZonePrecedingTransitions<'t> {
1802 tz: &'t TimeZone,
1803 cur: Timestamp,
1804}
1805
1806impl<'t> Iterator for TimeZonePrecedingTransitions<'t> {
1807 type Item = TimeZoneTransition<'t>;
1808
1809 fn next(&mut self) -> Option<TimeZoneTransition<'t>> {
1810 let trans = self.tz.previous_transition(self.cur)?;
1811 self.cur = trans.timestamp();
1812 Some(trans)
1813 }
1814}
1815
1816impl<'t> core::iter::FusedIterator for TimeZonePrecedingTransitions<'t> {}
1817
1818/// An iterator over time zone transitions going forward in time.
1819///
1820/// This iterator is created by [`TimeZone::following`].
1821///
1822/// # Example: show the 5 next time zone transitions
1823///
1824/// This shows how to find the 5 following time zone transitions (from a
1825/// particular datetime) for a particular time zone:
1826///
1827/// ```
1828/// use jiff::{tz::offset, Zoned};
1829///
1830/// let now: Zoned = "2024-12-31 18:25-05[US/Eastern]".parse()?;
1831/// let transitions = now
1832/// .time_zone()
1833/// .following(now.timestamp())
1834/// .take(5)
1835/// .map(|t| (
1836/// t.timestamp().to_zoned(now.time_zone().clone()),
1837/// t.offset(),
1838/// t.abbreviation().to_string(),
1839/// ))
1840/// .collect::<Vec<_>>();
1841/// assert_eq!(transitions, vec![
1842/// ("2025-03-09 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1843/// ("2025-11-02 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1844/// ("2026-03-08 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1845/// ("2026-11-01 01:00-05[US/Eastern]".parse()?, offset(-5), "EST".to_string()),
1846/// ("2027-03-14 03:00-04[US/Eastern]".parse()?, offset(-4), "EDT".to_string()),
1847/// ]);
1848///
1849/// # Ok::<(), Box<dyn std::error::Error>>(())
1850/// ```
1851#[derive(Clone, Debug)]
1852pub struct TimeZoneFollowingTransitions<'t> {
1853 tz: &'t TimeZone,
1854 cur: Timestamp,
1855}
1856
1857impl<'t> Iterator for TimeZoneFollowingTransitions<'t> {
1858 type Item = TimeZoneTransition<'t>;
1859
1860 fn next(&mut self) -> Option<TimeZoneTransition<'t>> {
1861 let trans = self.tz.next_transition(self.cur)?;
1862 self.cur = trans.timestamp();
1863 Some(trans)
1864 }
1865}
1866
1867impl<'t> core::iter::FusedIterator for TimeZoneFollowingTransitions<'t> {}
1868
1869/// A helper type for converting a `TimeZone` to a succinct human readable
1870/// description.
1871///
1872/// This is principally used in error messages in various places.
1873///
1874/// A previous iteration of this was just an `as_str() -> &str` method on
1875/// `TimeZone`, but that's difficult to do without relying on dynamic memory
1876/// allocation (or chunky arrays).
1877pub(crate) struct DiagnosticName<'a>(&'a TimeZone);
1878
1879impl<'a> core::fmt::Display for DiagnosticName<'a> {
1880 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
1881 repr::each! {
1882 &self.0.repr,
1883 UTC => write!(f, "UTC"),
1884 UNKNOWN => write!(f, "Etc/Unknown"),
1885 FIXED(offset) => write!(f, "{offset}"),
1886 STATIC_TZIF(tzif) => write!(f, "{}", tzif.name().unwrap_or("Local")),
1887 ARC_TZIF(tzif) => write!(f, "{}", tzif.name().unwrap_or("Local")),
1888 ARC_POSIX(posix) => write!(f, "{posix}"),
1889 }
1890 }
1891}
1892
1893/// A light abstraction over different representations of a time zone
1894/// abbreviation.
1895///
1896/// The lifetime parameter `'t` corresponds to the lifetime of the time zone
1897/// that produced this abbreviation.
1898#[derive(Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)]
1899pub(crate) enum TimeZoneAbbreviation<'t> {
1900 /// For when the abbreviation is borrowed directly from other data. For
1901 /// example, from TZif or from POSIX TZ strings.
1902 Borrowed(&'t str),
1903 /// For when the abbreviation has to be derived from other data. For
1904 /// example, from a fixed offset.
1905 ///
1906 /// The idea here is that a `TimeZone` shouldn't need to store the
1907 /// string representation of a fixed offset. Particularly in core-only
1908 /// environments, this is quite wasteful. So we make the string on-demand
1909 /// only when it's requested.
1910 ///
1911 /// An alternative design is to just implement `Display` and reuse
1912 /// `Offset`'s `Display` impl, but then we couldn't offer a `-> &str` API.
1913 /// I feel like that's just a bit overkill, and really just comes from the
1914 /// core-only straight-jacket.
1915 Owned(ArrayStr<9>),
1916}
1917
1918impl<'t> TimeZoneAbbreviation<'t> {
1919 /// Returns this abbreviation as a string borrowed from `self`.
1920 ///
1921 /// Notice that, like `Cow`, the lifetime of the string returned is
1922 /// tied to `self` and thus may be shorter than `'t`.
1923 fn as_str<'a>(&'a self) -> &'a str {
1924 match *self {
1925 TimeZoneAbbreviation::Borrowed(s) => s,
1926 TimeZoneAbbreviation::Owned(ref s) => s.as_str(),
1927 }
1928 }
1929}
1930
1931/// This module defines the internal representation of a `TimeZone`.
1932///
1933/// This module exists to _encapsulate_ the representation rigorously and
1934/// expose a safe and sound API.
1935mod repr {
1936 use core::mem::ManuallyDrop;
1937
1938 use crate::{
1939 tz::tzif::TzifStatic,
1940 util::{constant::unwrap, t},
1941 };
1942 #[cfg(feature = "alloc")]
1943 use crate::{
1944 tz::{posix::PosixTimeZoneOwned, tzif::TzifOwned},
1945 util::sync::Arc,
1946 };
1947
1948 use super::Offset;
1949
1950 // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used.
1951 #[allow(unused_imports)]
1952 use self::polyfill::{without_provenance, StrictProvenancePolyfill};
1953
1954 /// A macro for "matching" over the time zone representation variants.
1955 ///
1956 /// This macro is safe to use.
1957 ///
1958 /// Note that the `ARC_TZIF` and `ARC_POSIX` branches are automatically
1959 /// removed when `alloc` isn't enabled. Users of this macro needn't handle
1960 /// the `cfg` themselves.
1961 macro_rules! each {
1962 (
1963 $repr:expr,
1964 UTC => $utc:expr,
1965 UNKNOWN => $unknown:expr,
1966 FIXED($offset:ident) => $fixed:expr,
1967 STATIC_TZIF($static_tzif:ident) => $static_tzif_block:expr,
1968 ARC_TZIF($arc_tzif:ident) => $arc_tzif_block:expr,
1969 ARC_POSIX($arc_posix:ident) => $arc_posix_block:expr,
1970 ) => {{
1971 let repr = $repr;
1972 match repr.tag() {
1973 Repr::UTC => $utc,
1974 Repr::UNKNOWN => $unknown,
1975 Repr::FIXED => {
1976 // SAFETY: We've ensured our pointer tag is correct.
1977 let $offset = unsafe { repr.get_fixed() };
1978 $fixed
1979 }
1980 Repr::STATIC_TZIF => {
1981 // SAFETY: We've ensured our pointer tag is correct.
1982 let $static_tzif = unsafe { repr.get_static_tzif() };
1983 $static_tzif_block
1984 }
1985 #[cfg(feature = "alloc")]
1986 Repr::ARC_TZIF => {
1987 // SAFETY: We've ensured our pointer tag is correct.
1988 let $arc_tzif = unsafe { repr.get_arc_tzif() };
1989 $arc_tzif_block
1990 }
1991 #[cfg(feature = "alloc")]
1992 Repr::ARC_POSIX => {
1993 // SAFETY: We've ensured our pointer tag is correct.
1994 let $arc_posix = unsafe { repr.get_arc_posix() };
1995 $arc_posix_block
1996 }
1997 _ => {
1998 debug_assert!(false, "each: invalid time zone repr tag!");
1999 // SAFETY: The constructors for `Repr` guarantee that the
2000 // tag is always one of the values matched above.
2001 unsafe {
2002 core::hint::unreachable_unchecked();
2003 }
2004 }
2005 }
2006 }};
2007 }
2008 pub(super) use each;
2009
2010 /// The internal representation of a `TimeZone`.
2011 ///
2012 /// It has 6 different possible variants: `UTC`, `Etc/Unknown`, fixed
2013 /// offset, `static` TZif, `Arc` TZif or `Arc` POSIX time zone.
2014 ///
2015 /// This design uses pointer tagging so that:
2016 ///
2017 /// * The size of a `TimeZone` stays no bigger than a single word.
2018 /// * In core-only environments, a `TimeZone` can be created from
2019 /// compile-time TZif data without allocating.
2020 /// * UTC, unknown and fixed offset time zone does not require allocating.
2021 /// * We can still alloc for TZif and POSIX time zones created at runtime.
2022 /// (Allocating for TZif at runtime is the intended common case, and
2023 /// corresponds to reading `/usr/share/zoneinfo` entries.)
2024 ///
2025 /// We achieve this through pointer tagging and careful use of a strict
2026 /// provenance polyfill (because of MSRV). We use the lower 4 bits of a
2027 /// pointer to indicate which variant we have. This is sound because we
2028 /// require all types that we allocate for to have a minimum alignment of
2029 /// 8 bytes.
2030 pub(super) struct Repr {
2031 ptr: *const u8,
2032 }
2033
2034 impl Repr {
2035 const BITS: usize = 0b111;
2036 pub(super) const UTC: usize = 1;
2037 pub(super) const UNKNOWN: usize = 2;
2038 pub(super) const FIXED: usize = 3;
2039 pub(super) const STATIC_TZIF: usize = 0;
2040 pub(super) const ARC_TZIF: usize = 4;
2041 pub(super) const ARC_POSIX: usize = 5;
2042
2043 // The minimum alignment required for any heap allocated time zone
2044 // variants. This is related to the number of tags. We have 6 distinct
2045 // values above, which means we need an alignment of at least 6. Since
2046 // alignment must be a power of 2, the smallest possible alignment
2047 // is 8.
2048 const ALIGN: usize = 8;
2049
2050 /// Creates a representation for a `UTC` time zone.
2051 #[inline]
2052 pub(super) const fn utc() -> Repr {
2053 let ptr = without_provenance(Repr::UTC);
2054 Repr { ptr }
2055 }
2056
2057 /// Creates a representation for a `Etc/Unknown` time zone.
2058 #[inline]
2059 pub(super) const fn unknown() -> Repr {
2060 let ptr = without_provenance(Repr::UNKNOWN);
2061 Repr { ptr }
2062 }
2063
2064 /// Creates a representation for a fixed offset time zone.
2065 #[inline]
2066 pub(super) const fn fixed(offset: Offset) -> Repr {
2067 let seconds = offset.seconds_ranged().get_unchecked();
2068 // OK because offset is in -93599..=93599.
2069 let shifted = unwrap!(
2070 seconds.checked_shl(4),
2071 "offset small enough for left shift by 4 bits",
2072 );
2073 assert!(usize::MAX >= 4_294_967_295);
2074 // usize cast is okay because Jiff requires 32-bit.
2075 let ptr = without_provenance((shifted as usize) | Repr::FIXED);
2076 Repr { ptr }
2077 }
2078
2079 /// Creates a representation for a created-at-compile-time TZif time
2080 /// zone.
2081 ///
2082 /// This can only be correctly called by the `jiff-static` proc macro.
2083 #[inline]
2084 pub(super) const fn static_tzif(tzif: &'static TzifStatic) -> Repr {
2085 assert!(core::mem::align_of::<TzifStatic>() >= Repr::ALIGN);
2086 let tzif = (tzif as *const TzifStatic).cast::<u8>();
2087 // We very specifically do no materialize the pointer address here
2088 // because 1) it's UB and 2) the compiler generally prevents. This
2089 // is because in a const context, the specific pointer address
2090 // cannot be relied upon. Yet, we still want to do pointer tagging.
2091 //
2092 // Thankfully, this is the only variant that is a pointer that
2093 // we want to create in a const context. So we just make this
2094 // variant's tag `0`, and thus, no explicit pointer tagging is
2095 // required. (Becuase we ensure the alignment is at least 4, and
2096 // thus the least significant 3 bits are 0.)
2097 //
2098 // If this ends up not working out or if we need to support
2099 // another `static` variant, then we could perhaps to pointer
2100 // tagging with pointer arithmetic (like what the `tagged-pointer`
2101 // crate does). I haven't tried it though and I'm unclear if it
2102 // work.
2103 Repr { ptr: tzif }
2104 }
2105
2106 /// Creates a representation for a TZif time zone.
2107 #[cfg(feature = "alloc")]
2108 #[inline]
2109 pub(super) fn arc_tzif(tzif: Arc<TzifOwned>) -> Repr {
2110 assert!(core::mem::align_of::<TzifOwned>() >= Repr::ALIGN);
2111 let tzif = Arc::into_raw(tzif).cast::<u8>();
2112 assert!(tzif.addr() % 4 == 0);
2113 let ptr = tzif.map_addr(|addr| addr | Repr::ARC_TZIF);
2114 Repr { ptr }
2115 }
2116
2117 /// Creates a representation for a POSIX time zone.
2118 #[cfg(feature = "alloc")]
2119 #[inline]
2120 pub(super) fn arc_posix(posix_tz: Arc<PosixTimeZoneOwned>) -> Repr {
2121 assert!(
2122 core::mem::align_of::<PosixTimeZoneOwned>() >= Repr::ALIGN
2123 );
2124 let posix_tz = Arc::into_raw(posix_tz).cast::<u8>();
2125 assert!(posix_tz.addr() % 4 == 0);
2126 let ptr = posix_tz.map_addr(|addr| addr | Repr::ARC_POSIX);
2127 Repr { ptr }
2128 }
2129
2130 /// Gets the offset representation.
2131 ///
2132 /// # Safety
2133 ///
2134 /// Callers must ensure that the pointer tag is `FIXED`.
2135 #[inline]
2136 pub(super) unsafe fn get_fixed(&self) -> Offset {
2137 #[allow(unstable_name_collisions)]
2138 let addr = self.ptr.addr();
2139 // NOTE: Because of sign extension, we need to case to `i32`
2140 // before shifting.
2141 let seconds = t::SpanZoneOffset::new_unchecked((addr as i32) >> 4);
2142 Offset::from_seconds_ranged(seconds)
2143 }
2144
2145 /// Returns true if and only if this representation corresponds to the
2146 /// `Etc/Unknown` time zone.
2147 #[inline]
2148 pub(super) fn is_unknown(&self) -> bool {
2149 self.tag() == Repr::UNKNOWN
2150 }
2151
2152 /// Gets the static TZif representation.
2153 ///
2154 /// # Safety
2155 ///
2156 /// Callers must ensure that the pointer tag is `STATIC_TZIF`.
2157 #[inline]
2158 pub(super) unsafe fn get_static_tzif(&self) -> &'static TzifStatic {
2159 #[allow(unstable_name_collisions)]
2160 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2161 // SAFETY: Getting a `STATIC_TZIF` tag is only possible when
2162 // `self.ptr` was constructed from a valid and aligned (to at least
2163 // 4 bytes) `&TzifStatic` borrow. Which must be guaranteed by the
2164 // caller. We've also removed the tag bits above, so we must now
2165 // have the original pointer.
2166 unsafe { &*ptr.cast::<TzifStatic>() }
2167 }
2168
2169 /// Gets the `Arc` TZif representation.
2170 ///
2171 /// # Safety
2172 ///
2173 /// Callers must ensure that the pointer tag is `ARC_TZIF`.
2174 #[cfg(feature = "alloc")]
2175 #[inline]
2176 pub(super) unsafe fn get_arc_tzif<'a>(&'a self) -> &'a TzifOwned {
2177 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2178 // SAFETY: Getting a `ARC_TZIF` tag is only possible when
2179 // `self.ptr` was constructed from a valid and aligned
2180 // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed
2181 // the tag bits above, so we must now have the original
2182 // pointer.
2183 let arc = ManuallyDrop::new(unsafe {
2184 Arc::from_raw(ptr.cast::<TzifOwned>())
2185 });
2186 // SAFETY: The lifetime of the pointer returned is always
2187 // valid as long as the strong count on `arc` is at least
2188 // 1. Since the lifetime is no longer than `Repr` itself,
2189 // and a `Repr` being alive implies there is at least 1
2190 // for the strong `Arc` count, it follows that the lifetime
2191 // returned here is correct.
2192 unsafe { &*Arc::as_ptr(&arc) }
2193 }
2194
2195 /// Gets the `Arc` POSIX time zone representation.
2196 ///
2197 /// # Safety
2198 ///
2199 /// Callers must ensure that the pointer tag is `ARC_POSIX`.
2200 #[cfg(feature = "alloc")]
2201 #[inline]
2202 pub(super) unsafe fn get_arc_posix<'a>(
2203 &'a self,
2204 ) -> &'a PosixTimeZoneOwned {
2205 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2206 // SAFETY: Getting a `ARC_POSIX` tag is only possible when
2207 // `self.ptr` was constructed from a valid and aligned (to at least
2208 // 4 bytes) `Arc<PosixTimeZoneOwned>`. We've removed the tag
2209 // bits above, so we must now have the original pointer.
2210 let arc = ManuallyDrop::new(unsafe {
2211 Arc::from_raw(ptr.cast::<PosixTimeZoneOwned>())
2212 });
2213 // SAFETY: The lifetime of the pointer returned is always
2214 // valid as long as the strong count on `arc` is at least
2215 // 1. Since the lifetime is no longer than `Repr` itself,
2216 // and a `Repr` being alive implies there is at least 1
2217 // for the strong `Arc` count, it follows that the lifetime
2218 // returned here is correct.
2219 unsafe { &*Arc::as_ptr(&arc) }
2220 }
2221
2222 /// Returns the tag on the representation's pointer.
2223 ///
2224 /// The value is guaranteed to be one of the constant tag values.
2225 #[inline]
2226 pub(super) fn tag(&self) -> usize {
2227 #[allow(unstable_name_collisions)]
2228 {
2229 self.ptr.addr() & Repr::BITS
2230 }
2231 }
2232
2233 /// Returns a dumb copy of this representation.
2234 ///
2235 /// # Safety
2236 ///
2237 /// Callers must ensure that this representation's tag is UTC,
2238 /// UNKNOWN, FIXED or STATIC_TZIF.
2239 ///
2240 /// Namely, this specifically does not increment the ref count for
2241 /// the `Arc` pointers when the tag is `ARC_TZIF` or `ARC_POSIX`.
2242 /// This means that incorrect usage of this routine can lead to
2243 /// use-after-free.
2244 ///
2245 /// NOTE: It would be nice if we could make this `copy` routine safe,
2246 /// or at least panic if it's misused. But to do that, you need to know
2247 /// the time zone variant. And to know the time zone variant, you need
2248 /// to "look" at the tag in the pointer. And looking at the address of
2249 /// a pointer in a `const` context is precarious.
2250 #[inline]
2251 pub(super) const unsafe fn copy(&self) -> Repr {
2252 Repr { ptr: self.ptr }
2253 }
2254 }
2255
2256 // SAFETY: We use automic reference counting.
2257 unsafe impl Send for Repr {}
2258 // SAFETY: We don't use an interior mutability and otherwise don't permit
2259 // any kind of mutation (other than for an `Arc` managing its ref counts)
2260 // of a `Repr`.
2261 unsafe impl Sync for Repr {}
2262
2263 impl core::fmt::Debug for Repr {
2264 fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
2265 each! {
2266 self,
2267 UTC => write!(f, "UTC"),
2268 UNKNOWN => write!(f, "Etc/Unknown"),
2269 FIXED(offset) => write!(f, "{offset:?}"),
2270 STATIC_TZIF(tzif) => {
2271 // The full debug output is a bit much, so constrain it.
2272 let field = tzif.name().unwrap_or("Local");
2273 f.debug_tuple("TZif").field(&field).finish()
2274 },
2275 ARC_TZIF(tzif) => {
2276 // The full debug output is a bit much, so constrain it.
2277 let field = tzif.name().unwrap_or("Local");
2278 f.debug_tuple("TZif").field(&field).finish()
2279 },
2280 ARC_POSIX(posix) => write!(f, "Posix({posix})"),
2281 }
2282 }
2283 }
2284
2285 impl Clone for Repr {
2286 #[inline]
2287 fn clone(&self) -> Repr {
2288 // This `match` is written in an exhaustive fashion so that if
2289 // a new tag is added, it should be explicitly considered here.
2290 match self.tag() {
2291 // These are all `Copy` and can just be memcpy'd as-is.
2292 Repr::UTC
2293 | Repr::UNKNOWN
2294 | Repr::FIXED
2295 | Repr::STATIC_TZIF => Repr { ptr: self.ptr },
2296 #[cfg(feature = "alloc")]
2297 Repr::ARC_TZIF => {
2298 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2299 // SAFETY: Getting a `ARC_TZIF` tag is only possible when
2300 // `self.ptr` was constructed from a valid and aligned
2301 // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed
2302 // the tag bits above, so we must now have the original
2303 // pointer.
2304 unsafe {
2305 Arc::increment_strong_count(ptr.cast::<TzifOwned>());
2306 }
2307 Repr { ptr: self.ptr }
2308 }
2309 #[cfg(feature = "alloc")]
2310 Repr::ARC_POSIX => {
2311 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2312 // SAFETY: Getting a `ARC_POSIX` tag is only possible when
2313 // `self.ptr` was constructed from a valid and aligned (to
2314 // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've
2315 // removed the tag bits above, so we must now have the
2316 // original pointer.
2317 unsafe {
2318 Arc::increment_strong_count(
2319 ptr.cast::<PosixTimeZoneOwned>(),
2320 );
2321 }
2322 Repr { ptr: self.ptr }
2323 }
2324 _ => {
2325 debug_assert!(false, "clone: invalid time zone repr tag!");
2326 // SAFETY: The constructors for `Repr` guarantee that the
2327 // tag is always one of the values matched above.
2328 unsafe {
2329 core::hint::unreachable_unchecked();
2330 }
2331 }
2332 }
2333 }
2334 }
2335
2336 impl Drop for Repr {
2337 #[inline]
2338 fn drop(&mut self) {
2339 // This `match` is written in an exhaustive fashion so that if
2340 // a new tag is added, it should be explicitly considered here.
2341 match self.tag() {
2342 // These are all `Copy` and have no destructor.
2343 Repr::UTC
2344 | Repr::UNKNOWN
2345 | Repr::FIXED
2346 | Repr::STATIC_TZIF => {}
2347 #[cfg(feature = "alloc")]
2348 Repr::ARC_TZIF => {
2349 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2350 // SAFETY: Getting a `ARC_TZIF` tag is only possible when
2351 // `self.ptr` was constructed from a valid and aligned
2352 // (to at least 4 bytes) `Arc<TzifOwned>`. We've removed
2353 // the tag bits above, so we must now have the original
2354 // pointer.
2355 unsafe {
2356 Arc::decrement_strong_count(ptr.cast::<TzifOwned>());
2357 }
2358 }
2359 #[cfg(feature = "alloc")]
2360 Repr::ARC_POSIX => {
2361 let ptr = self.ptr.map_addr(|addr| addr & !Repr::BITS);
2362 // SAFETY: Getting a `ARC_POSIX` tag is only possible when
2363 // `self.ptr` was constructed from a valid and aligned (to
2364 // at least 4 bytes) `Arc<PosixTimeZoneOwned>`. We've
2365 // removed the tag bits above, so we must now have the
2366 // original pointer.
2367 unsafe {
2368 Arc::decrement_strong_count(
2369 ptr.cast::<PosixTimeZoneOwned>(),
2370 );
2371 }
2372 }
2373 _ => {
2374 debug_assert!(false, "drop: invalid time zone repr tag!");
2375 // SAFETY: The constructors for `Repr` guarantee that the
2376 // tag is always one of the values matched above.
2377 unsafe {
2378 core::hint::unreachable_unchecked();
2379 }
2380 }
2381 }
2382 }
2383 }
2384
2385 impl Eq for Repr {}
2386
2387 impl PartialEq for Repr {
2388 fn eq(&self, other: &Repr) -> bool {
2389 if self.tag() != other.tag() {
2390 return false;
2391 }
2392 each! {
2393 self,
2394 UTC => true,
2395 UNKNOWN => true,
2396 // SAFETY: OK, because we know the tags are equivalent and
2397 // `self` has a `FIXED` tag.
2398 FIXED(offset) => offset == unsafe { other.get_fixed() },
2399 // SAFETY: OK, because we know the tags are equivalent and
2400 // `self` has a `STATIC_TZIF` tag.
2401 STATIC_TZIF(tzif) => tzif == unsafe { other.get_static_tzif() },
2402 // SAFETY: OK, because we know the tags are equivalent and
2403 // `self` has an `ARC_TZIF` tag.
2404 ARC_TZIF(tzif) => tzif == unsafe { other.get_arc_tzif() },
2405 // SAFETY: OK, because we know the tags are equivalent and
2406 // `self` has an `ARC_POSIX` tag.
2407 ARC_POSIX(posix) => posix == unsafe { other.get_arc_posix() },
2408 }
2409 }
2410 }
2411
2412 /// This is a polyfill for a small subset of std's strict provenance APIs.
2413 ///
2414 /// The strict provenance APIs in `core` were stabilized in Rust 1.84,
2415 /// but it will likely be a while before Jiff can use them. (At time of
2416 /// writing, 2025-02-24, Jiff's MSRV is Rust 1.70.)
2417 ///
2418 /// The `const` requirement is also why these are non-generic free
2419 /// functions and not defined via an extension trait. It's also why we
2420 /// don't have the useful `map_addr` routine (which is directly relevant to
2421 /// our pointer tagging use case).
2422 mod polyfill {
2423 pub(super) const fn without_provenance(addr: usize) -> *const u8 {
2424 // SAFETY: Every valid `usize` is also a valid pointer (but not
2425 // necessarily legal to dereference).
2426 //
2427 // MSRV(1.84): We *really* ought to be using
2428 // `core::ptr::without_provenance` here, but Jiff's MSRV prevents
2429 // us.
2430 unsafe { core::mem::transmute(addr) }
2431 }
2432
2433 // On Rust 1.84+, `StrictProvenancePolyfill` isn't actually used.
2434 #[allow(dead_code)]
2435 pub(super) trait StrictProvenancePolyfill:
2436 Sized + Clone + Copy
2437 {
2438 fn addr(&self) -> usize;
2439 fn with_addr(&self, addr: usize) -> Self;
2440 fn map_addr(&self, map: impl FnOnce(usize) -> usize) -> Self {
2441 self.with_addr(map(self.addr()))
2442 }
2443 }
2444
2445 impl StrictProvenancePolyfill for *const u8 {
2446 fn addr(&self) -> usize {
2447 // SAFETY: Pointer-to-integer transmutes are valid (if you are
2448 // okay with losing the provenance).
2449 //
2450 // The implementation in std says that this isn't guaranteed to
2451 // be sound outside of std, but I'm not sure how else to do it.
2452 // In practice, this seems likely fine?
2453 unsafe { core::mem::transmute(self.cast::<()>()) }
2454 }
2455
2456 fn with_addr(&self, address: usize) -> Self {
2457 let self_addr = self.addr() as isize;
2458 let dest_addr = address as isize;
2459 let offset = dest_addr.wrapping_sub(self_addr);
2460 self.wrapping_offset(offset)
2461 }
2462 }
2463 }
2464}
2465
2466#[cfg(test)]
2467mod tests {
2468 #[cfg(feature = "alloc")]
2469 use crate::tz::testdata::TzifTestFile;
2470 use crate::{civil::date, tz::offset};
2471
2472 use super::*;
2473
2474 fn unambiguous(offset_hours: i8) -> AmbiguousOffset {
2475 let offset = offset(offset_hours);
2476 o_unambiguous(offset)
2477 }
2478
2479 fn gap(
2480 earlier_offset_hours: i8,
2481 later_offset_hours: i8,
2482 ) -> AmbiguousOffset {
2483 let earlier = offset(earlier_offset_hours);
2484 let later = offset(later_offset_hours);
2485 o_gap(earlier, later)
2486 }
2487
2488 fn fold(
2489 earlier_offset_hours: i8,
2490 later_offset_hours: i8,
2491 ) -> AmbiguousOffset {
2492 let earlier = offset(earlier_offset_hours);
2493 let later = offset(later_offset_hours);
2494 o_fold(earlier, later)
2495 }
2496
2497 fn o_unambiguous(offset: Offset) -> AmbiguousOffset {
2498 AmbiguousOffset::Unambiguous { offset }
2499 }
2500
2501 fn o_gap(earlier: Offset, later: Offset) -> AmbiguousOffset {
2502 AmbiguousOffset::Gap { before: earlier, after: later }
2503 }
2504
2505 fn o_fold(earlier: Offset, later: Offset) -> AmbiguousOffset {
2506 AmbiguousOffset::Fold { before: earlier, after: later }
2507 }
2508
2509 #[cfg(feature = "alloc")]
2510 #[test]
2511 fn time_zone_tzif_to_ambiguous_timestamp() {
2512 let tests: &[(&str, &[_])] = &[
2513 (
2514 "America/New_York",
2515 &[
2516 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
2517 ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)),
2518 ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)),
2519 ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)),
2520 ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)),
2521 ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)),
2522 ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)),
2523 ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)),
2524 ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)),
2525 ],
2526 ),
2527 (
2528 "Europe/Dublin",
2529 &[
2530 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(1)),
2531 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
2532 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)),
2533 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)),
2534 ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)),
2535 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)),
2536 ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)),
2537 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)),
2538 ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)),
2539 ],
2540 ),
2541 (
2542 "Australia/Tasmania",
2543 &[
2544 ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)),
2545 ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)),
2546 ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)),
2547 ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)),
2548 ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)),
2549 ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)),
2550 ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)),
2551 ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)),
2552 ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)),
2553 ],
2554 ),
2555 (
2556 "Antarctica/Troll",
2557 &[
2558 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)),
2559 // test the gap
2560 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
2561 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)),
2562 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)),
2563 // still in the gap!
2564 ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)),
2565 ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)),
2566 // finally out
2567 ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)),
2568 // test the fold
2569 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)),
2570 ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)),
2571 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)),
2572 // still in the fold!
2573 ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)),
2574 ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)),
2575 // finally out
2576 ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)),
2577 ],
2578 ),
2579 (
2580 "America/St_Johns",
2581 &[
2582 (
2583 (1969, 12, 31, 20, 30, 0, 0),
2584 o_unambiguous(-Offset::hms(3, 30, 0)),
2585 ),
2586 (
2587 (2024, 3, 10, 1, 59, 59, 999_999_999),
2588 o_unambiguous(-Offset::hms(3, 30, 0)),
2589 ),
2590 (
2591 (2024, 3, 10, 2, 0, 0, 0),
2592 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
2593 ),
2594 (
2595 (2024, 3, 10, 2, 59, 59, 999_999_999),
2596 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
2597 ),
2598 (
2599 (2024, 3, 10, 3, 0, 0, 0),
2600 o_unambiguous(-Offset::hms(2, 30, 0)),
2601 ),
2602 (
2603 (2024, 11, 3, 0, 59, 59, 999_999_999),
2604 o_unambiguous(-Offset::hms(2, 30, 0)),
2605 ),
2606 (
2607 (2024, 11, 3, 1, 0, 0, 0),
2608 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
2609 ),
2610 (
2611 (2024, 11, 3, 1, 59, 59, 999_999_999),
2612 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
2613 ),
2614 (
2615 (2024, 11, 3, 2, 0, 0, 0),
2616 o_unambiguous(-Offset::hms(3, 30, 0)),
2617 ),
2618 ],
2619 ),
2620 // This time zone has an interesting transition where it jumps
2621 // backwards a full day at 1867-10-19T15:30:00.
2622 (
2623 "America/Sitka",
2624 &[
2625 ((1969, 12, 31, 16, 0, 0, 0), unambiguous(-8)),
2626 (
2627 (-9999, 1, 2, 16, 58, 46, 0),
2628 o_unambiguous(Offset::hms(14, 58, 47)),
2629 ),
2630 (
2631 (1867, 10, 18, 15, 29, 59, 0),
2632 o_unambiguous(Offset::hms(14, 58, 47)),
2633 ),
2634 (
2635 (1867, 10, 18, 15, 30, 0, 0),
2636 // A fold of 24 hours!!!
2637 o_fold(
2638 Offset::hms(14, 58, 47),
2639 -Offset::hms(9, 1, 13),
2640 ),
2641 ),
2642 (
2643 (1867, 10, 19, 15, 29, 59, 999_999_999),
2644 // Still in the fold...
2645 o_fold(
2646 Offset::hms(14, 58, 47),
2647 -Offset::hms(9, 1, 13),
2648 ),
2649 ),
2650 (
2651 (1867, 10, 19, 15, 30, 0, 0),
2652 // Finally out.
2653 o_unambiguous(-Offset::hms(9, 1, 13)),
2654 ),
2655 ],
2656 ),
2657 // As with to_datetime, we test every possible transition
2658 // point here since this time zone has a small number of them.
2659 (
2660 "Pacific/Honolulu",
2661 &[
2662 (
2663 (1896, 1, 13, 11, 59, 59, 0),
2664 o_unambiguous(-Offset::hms(10, 31, 26)),
2665 ),
2666 (
2667 (1896, 1, 13, 12, 0, 0, 0),
2668 o_gap(
2669 -Offset::hms(10, 31, 26),
2670 -Offset::hms(10, 30, 0),
2671 ),
2672 ),
2673 (
2674 (1896, 1, 13, 12, 1, 25, 0),
2675 o_gap(
2676 -Offset::hms(10, 31, 26),
2677 -Offset::hms(10, 30, 0),
2678 ),
2679 ),
2680 (
2681 (1896, 1, 13, 12, 1, 26, 0),
2682 o_unambiguous(-Offset::hms(10, 30, 0)),
2683 ),
2684 (
2685 (1933, 4, 30, 1, 59, 59, 0),
2686 o_unambiguous(-Offset::hms(10, 30, 0)),
2687 ),
2688 (
2689 (1933, 4, 30, 2, 0, 0, 0),
2690 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2691 ),
2692 (
2693 (1933, 4, 30, 2, 59, 59, 0),
2694 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2695 ),
2696 (
2697 (1933, 4, 30, 3, 0, 0, 0),
2698 o_unambiguous(-Offset::hms(9, 30, 0)),
2699 ),
2700 (
2701 (1933, 5, 21, 10, 59, 59, 0),
2702 o_unambiguous(-Offset::hms(9, 30, 0)),
2703 ),
2704 (
2705 (1933, 5, 21, 11, 0, 0, 0),
2706 o_fold(
2707 -Offset::hms(9, 30, 0),
2708 -Offset::hms(10, 30, 0),
2709 ),
2710 ),
2711 (
2712 (1933, 5, 21, 11, 59, 59, 0),
2713 o_fold(
2714 -Offset::hms(9, 30, 0),
2715 -Offset::hms(10, 30, 0),
2716 ),
2717 ),
2718 (
2719 (1933, 5, 21, 12, 0, 0, 0),
2720 o_unambiguous(-Offset::hms(10, 30, 0)),
2721 ),
2722 (
2723 (1942, 2, 9, 1, 59, 59, 0),
2724 o_unambiguous(-Offset::hms(10, 30, 0)),
2725 ),
2726 (
2727 (1942, 2, 9, 2, 0, 0, 0),
2728 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2729 ),
2730 (
2731 (1942, 2, 9, 2, 59, 59, 0),
2732 o_gap(-Offset::hms(10, 30, 0), -Offset::hms(9, 30, 0)),
2733 ),
2734 (
2735 (1942, 2, 9, 3, 0, 0, 0),
2736 o_unambiguous(-Offset::hms(9, 30, 0)),
2737 ),
2738 (
2739 (1945, 8, 14, 13, 29, 59, 0),
2740 o_unambiguous(-Offset::hms(9, 30, 0)),
2741 ),
2742 (
2743 (1945, 8, 14, 13, 30, 0, 0),
2744 o_unambiguous(-Offset::hms(9, 30, 0)),
2745 ),
2746 (
2747 (1945, 8, 14, 13, 30, 1, 0),
2748 o_unambiguous(-Offset::hms(9, 30, 0)),
2749 ),
2750 (
2751 (1945, 9, 30, 0, 59, 59, 0),
2752 o_unambiguous(-Offset::hms(9, 30, 0)),
2753 ),
2754 (
2755 (1945, 9, 30, 1, 0, 0, 0),
2756 o_fold(
2757 -Offset::hms(9, 30, 0),
2758 -Offset::hms(10, 30, 0),
2759 ),
2760 ),
2761 (
2762 (1945, 9, 30, 1, 59, 59, 0),
2763 o_fold(
2764 -Offset::hms(9, 30, 0),
2765 -Offset::hms(10, 30, 0),
2766 ),
2767 ),
2768 (
2769 (1945, 9, 30, 2, 0, 0, 0),
2770 o_unambiguous(-Offset::hms(10, 30, 0)),
2771 ),
2772 (
2773 (1947, 6, 8, 1, 59, 59, 0),
2774 o_unambiguous(-Offset::hms(10, 30, 0)),
2775 ),
2776 (
2777 (1947, 6, 8, 2, 0, 0, 0),
2778 o_gap(-Offset::hms(10, 30, 0), -offset(10)),
2779 ),
2780 (
2781 (1947, 6, 8, 2, 29, 59, 0),
2782 o_gap(-Offset::hms(10, 30, 0), -offset(10)),
2783 ),
2784 ((1947, 6, 8, 2, 30, 0, 0), unambiguous(-10)),
2785 ],
2786 ),
2787 ];
2788 for &(tzname, datetimes_to_ambiguous) in tests {
2789 let test_file = TzifTestFile::get(tzname);
2790 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
2791 for &(datetime, ambiguous_kind) in datetimes_to_ambiguous {
2792 let (year, month, day, hour, min, sec, nano) = datetime;
2793 let dt = date(year, month, day).at(hour, min, sec, nano);
2794 let got = tz.to_ambiguous_zoned(dt);
2795 assert_eq!(
2796 got.offset(),
2797 ambiguous_kind,
2798 "\nTZ: {tzname}\ndatetime: \
2799 {year:04}-{month:02}-{day:02}T\
2800 {hour:02}:{min:02}:{sec:02}.{nano:09}",
2801 );
2802 }
2803 }
2804 }
2805
2806 #[cfg(feature = "alloc")]
2807 #[test]
2808 fn time_zone_tzif_to_datetime() {
2809 let o = |hours| offset(hours);
2810 let tests: &[(&str, &[_])] = &[
2811 (
2812 "America/New_York",
2813 &[
2814 ((0, 0), o(-5), "EST", (1969, 12, 31, 19, 0, 0, 0)),
2815 (
2816 (1710052200, 0),
2817 o(-5),
2818 "EST",
2819 (2024, 3, 10, 1, 30, 0, 0),
2820 ),
2821 (
2822 (1710053999, 999_999_999),
2823 o(-5),
2824 "EST",
2825 (2024, 3, 10, 1, 59, 59, 999_999_999),
2826 ),
2827 ((1710054000, 0), o(-4), "EDT", (2024, 3, 10, 3, 0, 0, 0)),
2828 (
2829 (1710055800, 0),
2830 o(-4),
2831 "EDT",
2832 (2024, 3, 10, 3, 30, 0, 0),
2833 ),
2834 ((1730610000, 0), o(-4), "EDT", (2024, 11, 3, 1, 0, 0, 0)),
2835 (
2836 (1730611800, 0),
2837 o(-4),
2838 "EDT",
2839 (2024, 11, 3, 1, 30, 0, 0),
2840 ),
2841 (
2842 (1730613599, 999_999_999),
2843 o(-4),
2844 "EDT",
2845 (2024, 11, 3, 1, 59, 59, 999_999_999),
2846 ),
2847 ((1730613600, 0), o(-5), "EST", (2024, 11, 3, 1, 0, 0, 0)),
2848 (
2849 (1730615400, 0),
2850 o(-5),
2851 "EST",
2852 (2024, 11, 3, 1, 30, 0, 0),
2853 ),
2854 ],
2855 ),
2856 (
2857 "Australia/Tasmania",
2858 &[
2859 ((0, 0), o(11), "AEDT", (1970, 1, 1, 11, 0, 0, 0)),
2860 (
2861 (1728142200, 0),
2862 o(10),
2863 "AEST",
2864 (2024, 10, 6, 1, 30, 0, 0),
2865 ),
2866 (
2867 (1728143999, 999_999_999),
2868 o(10),
2869 "AEST",
2870 (2024, 10, 6, 1, 59, 59, 999_999_999),
2871 ),
2872 (
2873 (1728144000, 0),
2874 o(11),
2875 "AEDT",
2876 (2024, 10, 6, 3, 0, 0, 0),
2877 ),
2878 (
2879 (1728145800, 0),
2880 o(11),
2881 "AEDT",
2882 (2024, 10, 6, 3, 30, 0, 0),
2883 ),
2884 ((1712415600, 0), o(11), "AEDT", (2024, 4, 7, 2, 0, 0, 0)),
2885 (
2886 (1712417400, 0),
2887 o(11),
2888 "AEDT",
2889 (2024, 4, 7, 2, 30, 0, 0),
2890 ),
2891 (
2892 (1712419199, 999_999_999),
2893 o(11),
2894 "AEDT",
2895 (2024, 4, 7, 2, 59, 59, 999_999_999),
2896 ),
2897 ((1712419200, 0), o(10), "AEST", (2024, 4, 7, 2, 0, 0, 0)),
2898 (
2899 (1712421000, 0),
2900 o(10),
2901 "AEST",
2902 (2024, 4, 7, 2, 30, 0, 0),
2903 ),
2904 ],
2905 ),
2906 // Pacific/Honolulu is small eough that we just test every
2907 // possible instant before, at and after each transition.
2908 (
2909 "Pacific/Honolulu",
2910 &[
2911 (
2912 (-2334101315, 0),
2913 -Offset::hms(10, 31, 26),
2914 "LMT",
2915 (1896, 1, 13, 11, 59, 59, 0),
2916 ),
2917 (
2918 (-2334101314, 0),
2919 -Offset::hms(10, 30, 0),
2920 "HST",
2921 (1896, 1, 13, 12, 1, 26, 0),
2922 ),
2923 (
2924 (-2334101313, 0),
2925 -Offset::hms(10, 30, 0),
2926 "HST",
2927 (1896, 1, 13, 12, 1, 27, 0),
2928 ),
2929 (
2930 (-1157283001, 0),
2931 -Offset::hms(10, 30, 0),
2932 "HST",
2933 (1933, 4, 30, 1, 59, 59, 0),
2934 ),
2935 (
2936 (-1157283000, 0),
2937 -Offset::hms(9, 30, 0),
2938 "HDT",
2939 (1933, 4, 30, 3, 0, 0, 0),
2940 ),
2941 (
2942 (-1157282999, 0),
2943 -Offset::hms(9, 30, 0),
2944 "HDT",
2945 (1933, 4, 30, 3, 0, 1, 0),
2946 ),
2947 (
2948 (-1155436201, 0),
2949 -Offset::hms(9, 30, 0),
2950 "HDT",
2951 (1933, 5, 21, 11, 59, 59, 0),
2952 ),
2953 (
2954 (-1155436200, 0),
2955 -Offset::hms(10, 30, 0),
2956 "HST",
2957 (1933, 5, 21, 11, 0, 0, 0),
2958 ),
2959 (
2960 (-1155436199, 0),
2961 -Offset::hms(10, 30, 0),
2962 "HST",
2963 (1933, 5, 21, 11, 0, 1, 0),
2964 ),
2965 (
2966 (-880198201, 0),
2967 -Offset::hms(10, 30, 0),
2968 "HST",
2969 (1942, 2, 9, 1, 59, 59, 0),
2970 ),
2971 (
2972 (-880198200, 0),
2973 -Offset::hms(9, 30, 0),
2974 "HWT",
2975 (1942, 2, 9, 3, 0, 0, 0),
2976 ),
2977 (
2978 (-880198199, 0),
2979 -Offset::hms(9, 30, 0),
2980 "HWT",
2981 (1942, 2, 9, 3, 0, 1, 0),
2982 ),
2983 (
2984 (-769395601, 0),
2985 -Offset::hms(9, 30, 0),
2986 "HWT",
2987 (1945, 8, 14, 13, 29, 59, 0),
2988 ),
2989 (
2990 (-769395600, 0),
2991 -Offset::hms(9, 30, 0),
2992 "HPT",
2993 (1945, 8, 14, 13, 30, 0, 0),
2994 ),
2995 (
2996 (-769395599, 0),
2997 -Offset::hms(9, 30, 0),
2998 "HPT",
2999 (1945, 8, 14, 13, 30, 1, 0),
3000 ),
3001 (
3002 (-765376201, 0),
3003 -Offset::hms(9, 30, 0),
3004 "HPT",
3005 (1945, 9, 30, 1, 59, 59, 0),
3006 ),
3007 (
3008 (-765376200, 0),
3009 -Offset::hms(10, 30, 0),
3010 "HST",
3011 (1945, 9, 30, 1, 0, 0, 0),
3012 ),
3013 (
3014 (-765376199, 0),
3015 -Offset::hms(10, 30, 0),
3016 "HST",
3017 (1945, 9, 30, 1, 0, 1, 0),
3018 ),
3019 (
3020 (-712150201, 0),
3021 -Offset::hms(10, 30, 0),
3022 "HST",
3023 (1947, 6, 8, 1, 59, 59, 0),
3024 ),
3025 // At this point, we hit the last transition and the POSIX
3026 // TZ string takes over.
3027 (
3028 (-712150200, 0),
3029 -Offset::hms(10, 0, 0),
3030 "HST",
3031 (1947, 6, 8, 2, 30, 0, 0),
3032 ),
3033 (
3034 (-712150199, 0),
3035 -Offset::hms(10, 0, 0),
3036 "HST",
3037 (1947, 6, 8, 2, 30, 1, 0),
3038 ),
3039 ],
3040 ),
3041 // This time zone has an interesting transition where it jumps
3042 // backwards a full day at 1867-10-19T15:30:00.
3043 (
3044 "America/Sitka",
3045 &[
3046 ((0, 0), o(-8), "PST", (1969, 12, 31, 16, 0, 0, 0)),
3047 (
3048 (-377705023201, 0),
3049 Offset::hms(14, 58, 47),
3050 "LMT",
3051 (-9999, 1, 2, 16, 58, 46, 0),
3052 ),
3053 (
3054 (-3225223728, 0),
3055 Offset::hms(14, 58, 47),
3056 "LMT",
3057 (1867, 10, 19, 15, 29, 59, 0),
3058 ),
3059 // Notice the 24 hour time jump backwards a whole day!
3060 (
3061 (-3225223727, 0),
3062 -Offset::hms(9, 1, 13),
3063 "LMT",
3064 (1867, 10, 18, 15, 30, 0, 0),
3065 ),
3066 (
3067 (-3225223726, 0),
3068 -Offset::hms(9, 1, 13),
3069 "LMT",
3070 (1867, 10, 18, 15, 30, 1, 0),
3071 ),
3072 ],
3073 ),
3074 ];
3075 for &(tzname, timestamps_to_datetimes) in tests {
3076 let test_file = TzifTestFile::get(tzname);
3077 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3078 for &((unix_sec, unix_nano), offset, abbrev, datetime) in
3079 timestamps_to_datetimes
3080 {
3081 let (year, month, day, hour, min, sec, nano) = datetime;
3082 let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap();
3083 let info = tz.to_offset_info(timestamp);
3084 assert_eq!(
3085 info.offset(),
3086 offset,
3087 "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
3088 );
3089 assert_eq!(
3090 info.abbreviation(),
3091 abbrev,
3092 "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
3093 );
3094 assert_eq!(
3095 info.offset().to_datetime(timestamp),
3096 date(year, month, day).at(hour, min, sec, nano),
3097 "\nTZ={tzname}, timestamp({unix_sec}, {unix_nano})",
3098 );
3099 }
3100 }
3101 }
3102
3103 #[cfg(feature = "alloc")]
3104 #[test]
3105 fn time_zone_posix_to_ambiguous_timestamp() {
3106 let tests: &[(&str, &[_])] = &[
3107 // America/New_York, but a utopia in which DST is abolished.
3108 (
3109 "EST5",
3110 &[
3111 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
3112 ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)),
3113 ],
3114 ),
3115 // The standard DST rule for America/New_York.
3116 (
3117 "EST5EDT,M3.2.0,M11.1.0",
3118 &[
3119 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
3120 ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)),
3121 ((2024, 3, 10, 2, 0, 0, 0), gap(-5, -4)),
3122 ((2024, 3, 10, 2, 59, 59, 999_999_999), gap(-5, -4)),
3123 ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-4)),
3124 ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-4)),
3125 ((2024, 11, 3, 1, 0, 0, 0), fold(-4, -5)),
3126 ((2024, 11, 3, 1, 59, 59, 999_999_999), fold(-4, -5)),
3127 ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)),
3128 ],
3129 ),
3130 // A bit of a nonsensical America/New_York that has DST, but whose
3131 // offset is equivalent to standard time. Having the same offset
3132 // means there's never any ambiguity.
3133 (
3134 "EST5EDT5,M3.2.0,M11.1.0",
3135 &[
3136 ((1969, 12, 31, 19, 0, 0, 0), unambiguous(-5)),
3137 ((2024, 3, 10, 1, 59, 59, 999_999_999), unambiguous(-5)),
3138 ((2024, 3, 10, 2, 0, 0, 0), unambiguous(-5)),
3139 ((2024, 3, 10, 2, 59, 59, 999_999_999), unambiguous(-5)),
3140 ((2024, 3, 10, 3, 0, 0, 0), unambiguous(-5)),
3141 ((2024, 11, 3, 0, 59, 59, 999_999_999), unambiguous(-5)),
3142 ((2024, 11, 3, 1, 0, 0, 0), unambiguous(-5)),
3143 ((2024, 11, 3, 1, 59, 59, 999_999_999), unambiguous(-5)),
3144 ((2024, 11, 3, 2, 0, 0, 0), unambiguous(-5)),
3145 ],
3146 ),
3147 // This is Europe/Dublin's rule. It's interesting because its
3148 // DST is an offset behind standard time. (DST is usually one hour
3149 // ahead of standard time.)
3150 (
3151 "IST-1GMT0,M10.5.0,M3.5.0/1",
3152 &[
3153 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)),
3154 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
3155 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 1)),
3156 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 1)),
3157 ((2024, 3, 31, 2, 0, 0, 0), unambiguous(1)),
3158 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(1)),
3159 ((2024, 10, 27, 1, 0, 0, 0), fold(1, 0)),
3160 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(1, 0)),
3161 ((2024, 10, 27, 2, 0, 0, 0), unambiguous(0)),
3162 ],
3163 ),
3164 // This is Australia/Tasmania's rule. We chose this because it's
3165 // in the southern hemisphere where DST still skips ahead one hour,
3166 // but it usually starts in the fall and ends in the spring.
3167 (
3168 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3169 &[
3170 ((1970, 1, 1, 11, 0, 0, 0), unambiguous(11)),
3171 ((2024, 4, 7, 1, 59, 59, 999_999_999), unambiguous(11)),
3172 ((2024, 4, 7, 2, 0, 0, 0), fold(11, 10)),
3173 ((2024, 4, 7, 2, 59, 59, 999_999_999), fold(11, 10)),
3174 ((2024, 4, 7, 3, 0, 0, 0), unambiguous(10)),
3175 ((2024, 10, 6, 1, 59, 59, 999_999_999), unambiguous(10)),
3176 ((2024, 10, 6, 2, 0, 0, 0), gap(10, 11)),
3177 ((2024, 10, 6, 2, 59, 59, 999_999_999), gap(10, 11)),
3178 ((2024, 10, 6, 3, 0, 0, 0), unambiguous(11)),
3179 ],
3180 ),
3181 // This is Antarctica/Troll's rule. We chose this one because its
3182 // DST transition is 2 hours instead of the standard 1 hour. This
3183 // means gaps and folds are twice as long as they usually are. And
3184 // it means there are 22 hour and 26 hour days, respectively. Wow!
3185 (
3186 "<+00>0<+02>-2,M3.5.0/1,M10.5.0/3",
3187 &[
3188 ((1970, 1, 1, 0, 0, 0, 0), unambiguous(0)),
3189 // test the gap
3190 ((2024, 3, 31, 0, 59, 59, 999_999_999), unambiguous(0)),
3191 ((2024, 3, 31, 1, 0, 0, 0), gap(0, 2)),
3192 ((2024, 3, 31, 1, 59, 59, 999_999_999), gap(0, 2)),
3193 // still in the gap!
3194 ((2024, 3, 31, 2, 0, 0, 0), gap(0, 2)),
3195 ((2024, 3, 31, 2, 59, 59, 999_999_999), gap(0, 2)),
3196 // finally out
3197 ((2024, 3, 31, 3, 0, 0, 0), unambiguous(2)),
3198 // test the fold
3199 ((2024, 10, 27, 0, 59, 59, 999_999_999), unambiguous(2)),
3200 ((2024, 10, 27, 1, 0, 0, 0), fold(2, 0)),
3201 ((2024, 10, 27, 1, 59, 59, 999_999_999), fold(2, 0)),
3202 // still in the fold!
3203 ((2024, 10, 27, 2, 0, 0, 0), fold(2, 0)),
3204 ((2024, 10, 27, 2, 59, 59, 999_999_999), fold(2, 0)),
3205 // finally out
3206 ((2024, 10, 27, 3, 0, 0, 0), unambiguous(0)),
3207 ],
3208 ),
3209 // This is America/St_Johns' rule, which has an offset with
3210 // non-zero minutes *and* a DST transition rule. (Indian Standard
3211 // Time is the one I'm more familiar with, but it turns out IST
3212 // does not have DST!)
3213 (
3214 "NST3:30NDT,M3.2.0,M11.1.0",
3215 &[
3216 (
3217 (1969, 12, 31, 20, 30, 0, 0),
3218 o_unambiguous(-Offset::hms(3, 30, 0)),
3219 ),
3220 (
3221 (2024, 3, 10, 1, 59, 59, 999_999_999),
3222 o_unambiguous(-Offset::hms(3, 30, 0)),
3223 ),
3224 (
3225 (2024, 3, 10, 2, 0, 0, 0),
3226 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
3227 ),
3228 (
3229 (2024, 3, 10, 2, 59, 59, 999_999_999),
3230 o_gap(-Offset::hms(3, 30, 0), -Offset::hms(2, 30, 0)),
3231 ),
3232 (
3233 (2024, 3, 10, 3, 0, 0, 0),
3234 o_unambiguous(-Offset::hms(2, 30, 0)),
3235 ),
3236 (
3237 (2024, 11, 3, 0, 59, 59, 999_999_999),
3238 o_unambiguous(-Offset::hms(2, 30, 0)),
3239 ),
3240 (
3241 (2024, 11, 3, 1, 0, 0, 0),
3242 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
3243 ),
3244 (
3245 (2024, 11, 3, 1, 59, 59, 999_999_999),
3246 o_fold(-Offset::hms(2, 30, 0), -Offset::hms(3, 30, 0)),
3247 ),
3248 (
3249 (2024, 11, 3, 2, 0, 0, 0),
3250 o_unambiguous(-Offset::hms(3, 30, 0)),
3251 ),
3252 ],
3253 ),
3254 ];
3255 for &(posix_tz, datetimes_to_ambiguous) in tests {
3256 let tz = TimeZone::posix(posix_tz).unwrap();
3257 for &(datetime, ambiguous_kind) in datetimes_to_ambiguous {
3258 let (year, month, day, hour, min, sec, nano) = datetime;
3259 let dt = date(year, month, day).at(hour, min, sec, nano);
3260 let got = tz.to_ambiguous_zoned(dt);
3261 assert_eq!(
3262 got.offset(),
3263 ambiguous_kind,
3264 "\nTZ: {posix_tz}\ndatetime: \
3265 {year:04}-{month:02}-{day:02}T\
3266 {hour:02}:{min:02}:{sec:02}.{nano:09}",
3267 );
3268 }
3269 }
3270 }
3271
3272 #[cfg(feature = "alloc")]
3273 #[test]
3274 fn time_zone_posix_to_datetime() {
3275 let o = |hours| offset(hours);
3276 let tests: &[(&str, &[_])] = &[
3277 ("EST5", &[((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0))]),
3278 (
3279 // From America/New_York
3280 "EST5EDT,M3.2.0,M11.1.0",
3281 &[
3282 ((0, 0), o(-5), (1969, 12, 31, 19, 0, 0, 0)),
3283 ((1710052200, 0), o(-5), (2024, 3, 10, 1, 30, 0, 0)),
3284 (
3285 (1710053999, 999_999_999),
3286 o(-5),
3287 (2024, 3, 10, 1, 59, 59, 999_999_999),
3288 ),
3289 ((1710054000, 0), o(-4), (2024, 3, 10, 3, 0, 0, 0)),
3290 ((1710055800, 0), o(-4), (2024, 3, 10, 3, 30, 0, 0)),
3291 ((1730610000, 0), o(-4), (2024, 11, 3, 1, 0, 0, 0)),
3292 ((1730611800, 0), o(-4), (2024, 11, 3, 1, 30, 0, 0)),
3293 (
3294 (1730613599, 999_999_999),
3295 o(-4),
3296 (2024, 11, 3, 1, 59, 59, 999_999_999),
3297 ),
3298 ((1730613600, 0), o(-5), (2024, 11, 3, 1, 0, 0, 0)),
3299 ((1730615400, 0), o(-5), (2024, 11, 3, 1, 30, 0, 0)),
3300 ],
3301 ),
3302 (
3303 // From Australia/Tasmania
3304 //
3305 // We chose this because it's a time zone in the southern
3306 // hemisphere with DST. Unlike the northern hemisphere, its DST
3307 // starts in the fall and ends in the spring. In the northern
3308 // hemisphere, we typically start DST in the spring and end it
3309 // in the fall.
3310 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3311 &[
3312 ((0, 0), o(11), (1970, 1, 1, 11, 0, 0, 0)),
3313 ((1728142200, 0), o(10), (2024, 10, 6, 1, 30, 0, 0)),
3314 (
3315 (1728143999, 999_999_999),
3316 o(10),
3317 (2024, 10, 6, 1, 59, 59, 999_999_999),
3318 ),
3319 ((1728144000, 0), o(11), (2024, 10, 6, 3, 0, 0, 0)),
3320 ((1728145800, 0), o(11), (2024, 10, 6, 3, 30, 0, 0)),
3321 ((1712415600, 0), o(11), (2024, 4, 7, 2, 0, 0, 0)),
3322 ((1712417400, 0), o(11), (2024, 4, 7, 2, 30, 0, 0)),
3323 (
3324 (1712419199, 999_999_999),
3325 o(11),
3326 (2024, 4, 7, 2, 59, 59, 999_999_999),
3327 ),
3328 ((1712419200, 0), o(10), (2024, 4, 7, 2, 0, 0, 0)),
3329 ((1712421000, 0), o(10), (2024, 4, 7, 2, 30, 0, 0)),
3330 ],
3331 ),
3332 (
3333 // Uses the maximum possible offset. A sloppy read of POSIX
3334 // seems to indicate the maximum offset is 24:59:59, but since
3335 // DST defaults to 1 hour ahead of standard time, it's possible
3336 // to use 24:59:59 for standard time, omit the DST offset, and
3337 // thus get a DST offset of 25:59:59.
3338 "XXX-24:59:59YYY,M3.2.0,M11.1.0",
3339 &[
3340 // 2024-01-05T00:00:00+00
3341 (
3342 (1704412800, 0),
3343 Offset::hms(24, 59, 59),
3344 (2024, 1, 6, 0, 59, 59, 0),
3345 ),
3346 // 2024-06-05T00:00:00+00 (DST)
3347 (
3348 (1717545600, 0),
3349 Offset::hms(25, 59, 59),
3350 (2024, 6, 6, 1, 59, 59, 0),
3351 ),
3352 ],
3353 ),
3354 ];
3355 for &(posix_tz, timestamps_to_datetimes) in tests {
3356 let tz = TimeZone::posix(posix_tz).unwrap();
3357 for &((unix_sec, unix_nano), offset, datetime) in
3358 timestamps_to_datetimes
3359 {
3360 let (year, month, day, hour, min, sec, nano) = datetime;
3361 let timestamp = Timestamp::new(unix_sec, unix_nano).unwrap();
3362 assert_eq!(
3363 tz.to_offset(timestamp),
3364 offset,
3365 "\ntimestamp({unix_sec}, {unix_nano})",
3366 );
3367 assert_eq!(
3368 tz.to_datetime(timestamp),
3369 date(year, month, day).at(hour, min, sec, nano),
3370 "\ntimestamp({unix_sec}, {unix_nano})",
3371 );
3372 }
3373 }
3374 }
3375
3376 #[test]
3377 fn time_zone_fixed_to_datetime() {
3378 let tz = offset(-5).to_time_zone();
3379 let unix_epoch = Timestamp::new(0, 0).unwrap();
3380 assert_eq!(
3381 tz.to_datetime(unix_epoch),
3382 date(1969, 12, 31).at(19, 0, 0, 0),
3383 );
3384
3385 let tz = Offset::from_seconds(93_599).unwrap().to_time_zone();
3386 let timestamp = Timestamp::new(253402207200, 999_999_999).unwrap();
3387 assert_eq!(
3388 tz.to_datetime(timestamp),
3389 date(9999, 12, 31).at(23, 59, 59, 999_999_999),
3390 );
3391
3392 let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone();
3393 let timestamp = Timestamp::new(-377705023201, 0).unwrap();
3394 assert_eq!(
3395 tz.to_datetime(timestamp),
3396 date(-9999, 1, 1).at(0, 0, 0, 0),
3397 );
3398 }
3399
3400 #[test]
3401 fn time_zone_fixed_to_timestamp() {
3402 let tz = offset(-5).to_time_zone();
3403 let dt = date(1969, 12, 31).at(19, 0, 0, 0);
3404 assert_eq!(
3405 tz.to_zoned(dt).unwrap().timestamp(),
3406 Timestamp::new(0, 0).unwrap()
3407 );
3408
3409 let tz = Offset::from_seconds(93_599).unwrap().to_time_zone();
3410 let dt = date(9999, 12, 31).at(23, 59, 59, 999_999_999);
3411 assert_eq!(
3412 tz.to_zoned(dt).unwrap().timestamp(),
3413 Timestamp::new(253402207200, 999_999_999).unwrap(),
3414 );
3415 let tz = Offset::from_seconds(93_598).unwrap().to_time_zone();
3416 assert!(tz.to_zoned(dt).is_err());
3417
3418 let tz = Offset::from_seconds(-93_599).unwrap().to_time_zone();
3419 let dt = date(-9999, 1, 1).at(0, 0, 0, 0);
3420 assert_eq!(
3421 tz.to_zoned(dt).unwrap().timestamp(),
3422 Timestamp::new(-377705023201, 0).unwrap(),
3423 );
3424 let tz = Offset::from_seconds(-93_598).unwrap().to_time_zone();
3425 assert!(tz.to_zoned(dt).is_err());
3426 }
3427
3428 #[cfg(feature = "alloc")]
3429 #[test]
3430 fn time_zone_tzif_previous_transition() {
3431 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3432 (
3433 "UTC",
3434 &[
3435 ("1969-12-31T19Z", None),
3436 ("2024-03-10T02Z", None),
3437 ("-009999-12-01 00Z", None),
3438 ("9999-12-01 00Z", None),
3439 ],
3440 ),
3441 (
3442 "America/New_York",
3443 &[
3444 ("2024-03-10 08Z", Some("2024-03-10 07Z")),
3445 ("2024-03-10 07:00:00.000000001Z", Some("2024-03-10 07Z")),
3446 ("2024-03-10 07Z", Some("2023-11-05 06Z")),
3447 ("2023-11-05 06Z", Some("2023-03-12 07Z")),
3448 ("-009999-01-31 00Z", None),
3449 ("9999-12-01 00Z", Some("9999-11-07 06Z")),
3450 // While at present we have "fat" TZif files for our
3451 // testdata, it's conceivable they could be swapped to
3452 // "slim." In which case, the tests above will mostly just
3453 // be testing POSIX TZ strings and not the TZif logic. So
3454 // below, we include times that will be in slim (i.e.,
3455 // historical times the precede the current DST rule).
3456 ("1969-12-31 19Z", Some("1969-10-26 06Z")),
3457 ("2000-04-02 08Z", Some("2000-04-02 07Z")),
3458 ("2000-04-02 07:00:00.000000001Z", Some("2000-04-02 07Z")),
3459 ("2000-04-02 07Z", Some("1999-10-31 06Z")),
3460 ("1999-10-31 06Z", Some("1999-04-04 07Z")),
3461 ],
3462 ),
3463 (
3464 "Australia/Tasmania",
3465 &[
3466 ("2010-04-03 17Z", Some("2010-04-03 16Z")),
3467 ("2010-04-03 16:00:00.000000001Z", Some("2010-04-03 16Z")),
3468 ("2010-04-03 16Z", Some("2009-10-03 16Z")),
3469 ("2009-10-03 16Z", Some("2009-04-04 16Z")),
3470 ("-009999-01-31 00Z", None),
3471 ("9999-12-01 00Z", Some("9999-10-02 16Z")),
3472 // Tests for historical data from tzdb. No POSIX TZ.
3473 ("2000-03-25 17Z", Some("2000-03-25 16Z")),
3474 ("2000-03-25 16:00:00.000000001Z", Some("2000-03-25 16Z")),
3475 ("2000-03-25 16Z", Some("1999-10-02 16Z")),
3476 ("1999-10-02 16Z", Some("1999-03-27 16Z")),
3477 ],
3478 ),
3479 // This is Europe/Dublin's rule. It's interesting because its
3480 // DST is an offset behind standard time. (DST is usually one hour
3481 // ahead of standard time.)
3482 (
3483 "Europe/Dublin",
3484 &[
3485 ("2010-03-28 02Z", Some("2010-03-28 01Z")),
3486 ("2010-03-28 01:00:00.000000001Z", Some("2010-03-28 01Z")),
3487 ("2010-03-28 01Z", Some("2009-10-25 01Z")),
3488 ("2009-10-25 01Z", Some("2009-03-29 01Z")),
3489 ("-009999-01-31 00Z", None),
3490 ("9999-12-01 00Z", Some("9999-10-31 01Z")),
3491 // Tests for historical data from tzdb. No POSIX TZ.
3492 ("1990-03-25 02Z", Some("1990-03-25 01Z")),
3493 ("1990-03-25 01:00:00.000000001Z", Some("1990-03-25 01Z")),
3494 ("1990-03-25 01Z", Some("1989-10-29 01Z")),
3495 ("1989-10-25 01Z", Some("1989-03-26 01Z")),
3496 ],
3497 ),
3498 (
3499 // Sao Paulo eliminated DST in 2019, so the previous transition
3500 // from 2024 is several years back.
3501 "America/Sao_Paulo",
3502 &[("2024-03-10 08Z", Some("2019-02-17 02Z"))],
3503 ),
3504 ];
3505 for &(tzname, prev_trans) in tests {
3506 if tzname != "America/Sao_Paulo" {
3507 continue;
3508 }
3509 let test_file = TzifTestFile::get(tzname);
3510 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3511 for (given, expected) in prev_trans {
3512 let given: Timestamp = given.parse().unwrap();
3513 let expected =
3514 expected.map(|s| s.parse::<Timestamp>().unwrap());
3515 let got = tz.previous_transition(given).map(|t| t.timestamp());
3516 assert_eq!(got, expected, "\nTZ: {tzname}\ngiven: {given}");
3517 }
3518 }
3519 }
3520
3521 #[cfg(feature = "alloc")]
3522 #[test]
3523 fn time_zone_tzif_next_transition() {
3524 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3525 (
3526 "UTC",
3527 &[
3528 ("1969-12-31T19Z", None),
3529 ("2024-03-10T02Z", None),
3530 ("-009999-12-01 00Z", None),
3531 ("9999-12-01 00Z", None),
3532 ],
3533 ),
3534 (
3535 "America/New_York",
3536 &[
3537 ("2024-03-10 06Z", Some("2024-03-10 07Z")),
3538 ("2024-03-10 06:59:59.999999999Z", Some("2024-03-10 07Z")),
3539 ("2024-03-10 07Z", Some("2024-11-03 06Z")),
3540 ("2024-11-03 06Z", Some("2025-03-09 07Z")),
3541 ("-009999-12-01 00Z", Some("1883-11-18 17Z")),
3542 ("9999-12-01 00Z", None),
3543 // While at present we have "fat" TZif files for our
3544 // testdata, it's conceivable they could be swapped to
3545 // "slim." In which case, the tests above will mostly just
3546 // be testing POSIX TZ strings and not the TZif logic. So
3547 // below, we include times that will be in slim (i.e.,
3548 // historical times the precede the current DST rule).
3549 ("1969-12-31 19Z", Some("1970-04-26 07Z")),
3550 ("2000-04-02 06Z", Some("2000-04-02 07Z")),
3551 ("2000-04-02 06:59:59.999999999Z", Some("2000-04-02 07Z")),
3552 ("2000-04-02 07Z", Some("2000-10-29 06Z")),
3553 ("2000-10-29 06Z", Some("2001-04-01 07Z")),
3554 ],
3555 ),
3556 (
3557 "Australia/Tasmania",
3558 &[
3559 ("2010-04-03 15Z", Some("2010-04-03 16Z")),
3560 ("2010-04-03 15:59:59.999999999Z", Some("2010-04-03 16Z")),
3561 ("2010-04-03 16Z", Some("2010-10-02 16Z")),
3562 ("2010-10-02 16Z", Some("2011-04-02 16Z")),
3563 ("-009999-12-01 00Z", Some("1895-08-31 14:10:44Z")),
3564 ("9999-12-01 00Z", None),
3565 // Tests for historical data from tzdb. No POSIX TZ.
3566 ("2000-03-25 15Z", Some("2000-03-25 16Z")),
3567 ("2000-03-25 15:59:59.999999999Z", Some("2000-03-25 16Z")),
3568 ("2000-03-25 16Z", Some("2000-08-26 16Z")),
3569 ("2000-08-26 16Z", Some("2001-03-24 16Z")),
3570 ],
3571 ),
3572 (
3573 "Europe/Dublin",
3574 &[
3575 ("2010-03-28 00Z", Some("2010-03-28 01Z")),
3576 ("2010-03-28 00:59:59.999999999Z", Some("2010-03-28 01Z")),
3577 ("2010-03-28 01Z", Some("2010-10-31 01Z")),
3578 ("2010-10-31 01Z", Some("2011-03-27 01Z")),
3579 ("-009999-12-01 00Z", Some("1880-08-02 00:25:21Z")),
3580 ("9999-12-01 00Z", None),
3581 // Tests for historical data from tzdb. No POSIX TZ.
3582 ("1990-03-25 00Z", Some("1990-03-25 01Z")),
3583 ("1990-03-25 00:59:59.999999999Z", Some("1990-03-25 01Z")),
3584 ("1990-03-25 01Z", Some("1990-10-28 01Z")),
3585 ("1990-10-28 01Z", Some("1991-03-31 01Z")),
3586 ],
3587 ),
3588 (
3589 // Sao Paulo eliminated DST in 2019, so the next transition
3590 // from 2024 no longer exists.
3591 "America/Sao_Paulo",
3592 &[("2024-03-10 08Z", None)],
3593 ),
3594 ];
3595 for &(tzname, next_trans) in tests {
3596 let test_file = TzifTestFile::get(tzname);
3597 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3598 for (given, expected) in next_trans {
3599 let given: Timestamp = given.parse().unwrap();
3600 let expected =
3601 expected.map(|s| s.parse::<Timestamp>().unwrap());
3602 let got = tz.next_transition(given).map(|t| t.timestamp());
3603 assert_eq!(got, expected, "\nTZ: {tzname}\ngiven: {given}");
3604 }
3605 }
3606 }
3607
3608 #[cfg(feature = "alloc")]
3609 #[test]
3610 fn time_zone_posix_previous_transition() {
3611 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3612 // America/New_York, but a utopia in which DST is abolished. There
3613 // are no time zone transitions, so next_transition always returns
3614 // None.
3615 (
3616 "EST5",
3617 &[
3618 ("1969-12-31T19Z", None),
3619 ("2024-03-10T02Z", None),
3620 ("-009999-12-01 00Z", None),
3621 ("9999-12-01 00Z", None),
3622 ],
3623 ),
3624 // The standard DST rule for America/New_York.
3625 (
3626 "EST5EDT,M3.2.0,M11.1.0",
3627 &[
3628 ("1969-12-31 19Z", Some("1969-11-02 06Z")),
3629 ("2024-03-10 08Z", Some("2024-03-10 07Z")),
3630 ("2024-03-10 07:00:00.000000001Z", Some("2024-03-10 07Z")),
3631 ("2024-03-10 07Z", Some("2023-11-05 06Z")),
3632 ("2023-11-05 06Z", Some("2023-03-12 07Z")),
3633 ("-009999-01-31 00Z", None),
3634 ("9999-12-01 00Z", Some("9999-11-07 06Z")),
3635 ],
3636 ),
3637 (
3638 // From Australia/Tasmania
3639 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3640 &[
3641 ("2010-04-03 17Z", Some("2010-04-03 16Z")),
3642 ("2010-04-03 16:00:00.000000001Z", Some("2010-04-03 16Z")),
3643 ("2010-04-03 16Z", Some("2009-10-03 16Z")),
3644 ("2009-10-03 16Z", Some("2009-04-04 16Z")),
3645 ("-009999-01-31 00Z", None),
3646 ("9999-12-01 00Z", Some("9999-10-02 16Z")),
3647 ],
3648 ),
3649 // This is Europe/Dublin's rule. It's interesting because its
3650 // DST is an offset behind standard time. (DST is usually one hour
3651 // ahead of standard time.)
3652 (
3653 "IST-1GMT0,M10.5.0,M3.5.0/1",
3654 &[
3655 ("2010-03-28 02Z", Some("2010-03-28 01Z")),
3656 ("2010-03-28 01:00:00.000000001Z", Some("2010-03-28 01Z")),
3657 ("2010-03-28 01Z", Some("2009-10-25 01Z")),
3658 ("2009-10-25 01Z", Some("2009-03-29 01Z")),
3659 ("-009999-01-31 00Z", None),
3660 ("9999-12-01 00Z", Some("9999-10-31 01Z")),
3661 ],
3662 ),
3663 ];
3664 for &(posix_tz, prev_trans) in tests {
3665 let tz = TimeZone::posix(posix_tz).unwrap();
3666 for (given, expected) in prev_trans {
3667 let given: Timestamp = given.parse().unwrap();
3668 let expected =
3669 expected.map(|s| s.parse::<Timestamp>().unwrap());
3670 let got = tz.previous_transition(given).map(|t| t.timestamp());
3671 assert_eq!(got, expected, "\nTZ: {posix_tz}\ngiven: {given}");
3672 }
3673 }
3674 }
3675
3676 #[cfg(feature = "alloc")]
3677 #[test]
3678 fn time_zone_posix_next_transition() {
3679 let tests: &[(&str, &[(&str, Option<&str>)])] = &[
3680 // America/New_York, but a utopia in which DST is abolished. There
3681 // are no time zone transitions, so next_transition always returns
3682 // None.
3683 (
3684 "EST5",
3685 &[
3686 ("1969-12-31T19Z", None),
3687 ("2024-03-10T02Z", None),
3688 ("-009999-12-01 00Z", None),
3689 ("9999-12-01 00Z", None),
3690 ],
3691 ),
3692 // The standard DST rule for America/New_York.
3693 (
3694 "EST5EDT,M3.2.0,M11.1.0",
3695 &[
3696 ("1969-12-31 19Z", Some("1970-03-08 07Z")),
3697 ("2024-03-10 06Z", Some("2024-03-10 07Z")),
3698 ("2024-03-10 06:59:59.999999999Z", Some("2024-03-10 07Z")),
3699 ("2024-03-10 07Z", Some("2024-11-03 06Z")),
3700 ("2024-11-03 06Z", Some("2025-03-09 07Z")),
3701 ("-009999-12-01 00Z", Some("-009998-03-10 07Z")),
3702 ("9999-12-01 00Z", None),
3703 ],
3704 ),
3705 (
3706 // From Australia/Tasmania
3707 "AEST-10AEDT,M10.1.0,M4.1.0/3",
3708 &[
3709 ("2010-04-03 15Z", Some("2010-04-03 16Z")),
3710 ("2010-04-03 15:59:59.999999999Z", Some("2010-04-03 16Z")),
3711 ("2010-04-03 16Z", Some("2010-10-02 16Z")),
3712 ("2010-10-02 16Z", Some("2011-04-02 16Z")),
3713 ("-009999-12-01 00Z", Some("-009998-04-06 16Z")),
3714 ("9999-12-01 00Z", None),
3715 ],
3716 ),
3717 // This is Europe/Dublin's rule. It's interesting because its
3718 // DST is an offset behind standard time. (DST is usually one hour
3719 // ahead of standard time.)
3720 (
3721 "IST-1GMT0,M10.5.0,M3.5.0/1",
3722 &[
3723 ("2010-03-28 00Z", Some("2010-03-28 01Z")),
3724 ("2010-03-28 00:59:59.999999999Z", Some("2010-03-28 01Z")),
3725 ("2010-03-28 01Z", Some("2010-10-31 01Z")),
3726 ("2010-10-31 01Z", Some("2011-03-27 01Z")),
3727 ("-009999-12-01 00Z", Some("-009998-03-31 01Z")),
3728 ("9999-12-01 00Z", None),
3729 ],
3730 ),
3731 ];
3732 for &(posix_tz, next_trans) in tests {
3733 let tz = TimeZone::posix(posix_tz).unwrap();
3734 for (given, expected) in next_trans {
3735 let given: Timestamp = given.parse().unwrap();
3736 let expected =
3737 expected.map(|s| s.parse::<Timestamp>().unwrap());
3738 let got = tz.next_transition(given).map(|t| t.timestamp());
3739 assert_eq!(got, expected, "\nTZ: {posix_tz}\ngiven: {given}");
3740 }
3741 }
3742 }
3743
3744 /// This tests that the size of a time zone is kept at a single word.
3745 ///
3746 /// This is important because every jiff::Zoned has a TimeZone inside of
3747 /// it, and we want to keep its size as small as we can.
3748 #[test]
3749 fn time_zone_size() {
3750 #[cfg(feature = "alloc")]
3751 {
3752 let word = core::mem::size_of::<usize>();
3753 assert_eq!(word, core::mem::size_of::<TimeZone>());
3754 }
3755 #[cfg(all(target_pointer_width = "64", not(feature = "alloc")))]
3756 {
3757 #[cfg(debug_assertions)]
3758 {
3759 assert_eq!(8, core::mem::size_of::<TimeZone>());
3760 }
3761 #[cfg(not(debug_assertions))]
3762 {
3763 // This asserts the same value as the alloc value above, but
3764 // it wasn't always this way, which is why it's written out
3765 // separately. Moreover, in theory, I'd be open to regressing
3766 // this value if it led to an improvement in alloc-mode. But
3767 // more likely, it would be nice to decrease this size in
3768 // non-alloc modes.
3769 assert_eq!(8, core::mem::size_of::<TimeZone>());
3770 }
3771 }
3772 }
3773
3774 /// This tests a few other cases for `TimeZone::to_offset` that
3775 /// probably aren't worth showing in doctest examples.
3776 #[test]
3777 fn time_zone_to_offset() {
3778 let ts = Timestamp::from_second(123456789).unwrap();
3779
3780 let tz = TimeZone::fixed(offset(-5));
3781 let info = tz.to_offset_info(ts);
3782 assert_eq!(info.offset(), offset(-5));
3783 assert_eq!(info.dst(), Dst::No);
3784 assert_eq!(info.abbreviation(), "-05");
3785
3786 let tz = TimeZone::fixed(offset(5));
3787 let info = tz.to_offset_info(ts);
3788 assert_eq!(info.offset(), offset(5));
3789 assert_eq!(info.dst(), Dst::No);
3790 assert_eq!(info.abbreviation(), "+05");
3791
3792 let tz = TimeZone::fixed(offset(-12));
3793 let info = tz.to_offset_info(ts);
3794 assert_eq!(info.offset(), offset(-12));
3795 assert_eq!(info.dst(), Dst::No);
3796 assert_eq!(info.abbreviation(), "-12");
3797
3798 let tz = TimeZone::fixed(offset(12));
3799 let info = tz.to_offset_info(ts);
3800 assert_eq!(info.offset(), offset(12));
3801 assert_eq!(info.dst(), Dst::No);
3802 assert_eq!(info.abbreviation(), "+12");
3803
3804 let tz = TimeZone::fixed(offset(0));
3805 let info = tz.to_offset_info(ts);
3806 assert_eq!(info.offset(), offset(0));
3807 assert_eq!(info.dst(), Dst::No);
3808 assert_eq!(info.abbreviation(), "UTC");
3809 }
3810
3811 /// This tests a few other cases for `TimeZone::to_fixed_offset` that
3812 /// probably aren't worth showing in doctest examples.
3813 #[test]
3814 fn time_zone_to_fixed_offset() {
3815 let tz = TimeZone::UTC;
3816 assert_eq!(tz.to_fixed_offset().unwrap(), Offset::UTC);
3817
3818 let offset = Offset::from_hours(1).unwrap();
3819 let tz = TimeZone::fixed(offset);
3820 assert_eq!(tz.to_fixed_offset().unwrap(), offset);
3821
3822 #[cfg(feature = "alloc")]
3823 {
3824 let tz = TimeZone::posix("EST5").unwrap();
3825 assert!(tz.to_fixed_offset().is_err());
3826
3827 let test_file = TzifTestFile::get("America/New_York");
3828 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3829 assert!(tz.to_fixed_offset().is_err());
3830 }
3831 }
3832
3833 /// This tests that `TimeZone::following` correctly returns a final time
3834 /// zone transition.
3835 #[cfg(feature = "alloc")]
3836 #[test]
3837 fn time_zone_following_boa_vista() {
3838 use alloc::{vec, vec::Vec};
3839
3840 let test_file = TzifTestFile::get("America/Boa_Vista");
3841 let tz = TimeZone::tzif(test_file.name, test_file.data).unwrap();
3842 let last4: Vec<Timestamp> = vec![
3843 "1999-10-03T04Z".parse().unwrap(),
3844 "2000-02-27T03Z".parse().unwrap(),
3845 "2000-10-08T04Z".parse().unwrap(),
3846 "2000-10-15T03Z".parse().unwrap(),
3847 ];
3848
3849 let start: Timestamp = "2001-01-01T00Z".parse().unwrap();
3850 let mut transitions: Vec<Timestamp> =
3851 tz.preceding(start).take(4).map(|t| t.timestamp()).collect();
3852 transitions.reverse();
3853 assert_eq!(transitions, last4);
3854
3855 let start: Timestamp = "1990-01-01T00Z".parse().unwrap();
3856 let transitions: Vec<Timestamp> =
3857 tz.following(start).map(|t| t.timestamp()).collect();
3858 // The regression here was that the 2000-10-15 transition wasn't
3859 // being found here, despite the fact that it existed and was found
3860 // by `preceding`.
3861 assert_eq!(transitions, last4);
3862 }
3863}